Discrete differential geometry in homotopy type theory

Greg Langmead

Carnegie Mellon University

April 2025

Summary

This work brings to HoTT

- connections, curvature, and vector fields
- the index of a vector field
- a theorem in dimension 2 that total curvature = total index

$\mathsf{Classical} \to \mathsf{HoTT}$

Let M be a smooth, oriented 2-manifold without boundary, F_A the curvature of a connection A on the tangent bundle, and X a vector field with isolated zeroes x_1, \ldots, x_n .

Classical index

Near an isolated zero there are only three possibilities: index 0, 1, -1.

Index is the winding number of the field as you move clockwise around the zero.

Poincaré-Hopf theorem

The total index of a vector field is the Euler characteristic.

Examples:

Rotation: index +1 at each pole = **2**

Gauss-Bonnet theorem

Total curvature divided by 2π is the Euler characteristic.

Curvature in 2D is a function $F_A: M \to \mathbb{R}$.

 $\int_M F_A$ sums the values at every point.

Positive and negative curvature cancel: ${\bf 0}$

Constant curvature 1, area 4π : 2

- Combinatorial manifolds
- Torsors and classifying maps
- Connections and curvature
- Vector fields
- Main theorem

HoTT background

Symmetry,

Bezem, M., Buchholtz, U., Cagne, P., Dundas, B. I., and Grayson, D. R., (2021-) https://github.com/UniMath/SymmetryBook.

Central H-spaces and banded types, Buchholtz, U., Christensen, J. D., Flaten, J. G. T., and Rijke, E. (2023) arXiv:2301.02636

 Nilpotent types and fracture squares in homotopy type theory, Scoccola, L. (2020)
MSCS 30(5). arXiv:1903.03245

Combinatorial manifolds

Manifolds in HoTT

- Recall the classical theory of simplicial complexes
- Define a realization procedure to construct types

Simplicial complexes

Definition

An **abstract simplicial complex** M of **dimension** n is an ordered list of sets

- $M \stackrel{\text{def}}{=} [M_0, \ldots, M_n]$ consisting of
 - a set M_0 of vertices
 - sets M_k of subsets of M_0 of cardinality k+1
 - downward closed: if $F \in M_k$ and $G \subseteq F$, |G| = j + 1 then $G \in M_j$

We call the truncated list

 $M_{\leq k} \stackrel{\text{def}}{=} [M_0, \dots, M_k]$ the *k*-skeleton of *M*.

Simplicial complexes

Example

The complete simplex of dimension n, denoted $\Delta(n)$, is the set $\{0, \ldots, n\}$ and its power set. The (n-1)-skeleton $\Delta(n)_{\leq (n-1)}$ is denoted $\partial\Delta(n)$ and will serve as a combinatorial (n-1)-sphere.

$$\Delta(1) \text{ is visually } 0 \longleftarrow 1 , \partial \Delta(1) \text{ is visually } 0 \bullet \bullet \bullet 1 ,$$

$$\Delta(2) \text{ is visually } 0 \longleftarrow 2 , \partial \Delta(2) \text{ is visually } 0 \longleftarrow 2$$

We will **realize** simplicial complexes by means of **a sequence of pushouts**. Base case: the realization \mathbb{M} of a 0-dimensional complex M is M_0 .

In particular the 0-sphere $\partial \Delta(1) \stackrel{\text{def}}{=} \partial \Delta(1)_0$.

For a 1-dim complex $M \stackrel{\text{def}}{=} [M_0, M_1]$ the realization is given by

For example the simplicial 1-sphere
$$\partial \Delta(2) \stackrel{\text{def}}{=} 0 \xrightarrow{1} 2$$
 is given by

Or the 1-skeleton of the octahedron \mathbb{O} :

To realize $M \stackrel{\text{def}}{=} [M_0, M_1, M_2]$ use $\partial \Delta(1), \partial \Delta(2)$:

$$\begin{array}{cccc} M_1 \times \partial \Delta(1) & \stackrel{\mathsf{pr}_1}{\longrightarrow} & M_1 \\ & \mathbb{A}_0 & \downarrow & & \downarrow^{*_{\mathbb{M}_1}} \\ M_0 &= \mathbb{M}_0 & \stackrel{\neg}{\longrightarrow} & \mathbb{M}_1 & \stackrel{\rightarrow}{\longrightarrow} & \mathbb{M}_2 \\ & \mathbb{A}_1 & \stackrel{h_2}{\longrightarrow} & \uparrow^{*_{\mathbb{M}_2}} \\ & M_2 \times \partial \Delta(2) & \stackrel{\mathsf{pr}_1}{\longrightarrow} & M_2 \end{array}$$

The full octahedron $\mathbb{O}:$

The **link** of a vertex w in a 2-complex is: the sets not containing w but whose union with w is a face.

A **combinatorial manifold** is a simplicial complex all of whose links are^{*} simplicial spheres.

This will be our model of the tangent space.

*the (classical) geometric realization is homeomorphic to a sphere

$Combinatorial \ manifolds \leftrightarrow smooth \ manifolds$

Theorem (Whitehead (1940))

Every smooth n-manifold has a compatible structure of a **combinatorial manifold**: a simplicial complex of dimension n such that the link is a combinatorial (n - 1)-sphere, *i.e.* its geometric realization is an (n - 1)-sphere.

https://ncatlab.org/nlab/show/triangulation+theorem

Counterexample: Wikipedia says this is a simplicial complex, but we can see it fails the link condition:

Torsors

What type families $\mathbb{M} \to \mathcal{U}$ will we consider? Families of **torsors**, also called **principal bundles**.

Torsors

Let G be a (higher) group.

Definition

- A **right** *G*-**object** is a type *X* equipped with a homomorphism $\phi : G^{op} \to Aut(X)$.
- X is furthermore a G-torsor if it is inhabited and the map $(\mathrm{pr}_1, \phi) : X \times G \to X \times X$ is an equivalence.
- The inverse is (pr₁, s) where s : X × X → G is called subtraction (when G is commutative).
- Let *BG* be the type of *G*-torsors.
- Let G_{reg} be the *G*-torsor consisting of *G* acting on itself on the right.

- **1** $\Omega(BG, G_{reg}) \simeq G$ and composition of loops corresponds to multiplication in G.
- **2** BG is connected.
- $3 1 \& 2 \implies BG \text{ is a } \mathsf{K}(G,1).$

See the Buchholtz et. al. H-spaces paper for more.

How to map into BS^1

To construct maps into BS^1 we lift a family of mere circles.

We will assume we have such a lift when we need it. (Remark: the lift is a choice of **orientation**.)

Other names:

- $\mathsf{BAut}(S^1) = BO(2) = \mathsf{EM}(\mathbb{Z}, 1)$ (where $\mathsf{EM}(G, n) \stackrel{\text{def}}{=} \mathsf{BAut}(\mathsf{K}(G, n)))$
- $BS^1 = BSO(2) = K(\mathbb{Z}, 2)$

Connections and curvature

Connections

Connections are extensions of a bundle to higher skeleta.

Recall link

The **link** of a vertex w in a 2-complex is: the sets not containing w but whose union with w is a face.

Define **the tangent bundle** on a combinatorial manifold to be $T_0 \stackrel{\text{def}}{=} \text{link} : \mathbb{M}_0 \to \text{BAut}(S^1).$

Connections on the tangent bundle

An extension T_1 of T_0 to \mathbb{M}_1 is called a connection on the tangent bundle.

$T_1: \mathbb{M}_1 \to \mathsf{BAut}(S^1)$ extending link

We will define T_1 on the edge wb, so we need a term $T_1(wb) : link(w) =_{BAut(S^1)} link(b)$.

We imagine tipping:

 $T_1(g: \operatorname{link}(w)) \stackrel{\text{def}}{=} w: \operatorname{link}(b), \ldots$

Use this method to define T_1 on every edge.

$T_1: \mathbb{M}_1 \to \mathsf{BAut}(S^1)$ extending link

Denote the path $wb \cdot br \cdot rw$ by $\partial(wbr)$. Consider $T_1(\partial(wbr))$:

We come back rotated by 1/4 turn. Call this rotation R : link(w) =_{BAut(S1)} link(w).

Extending T_1 to a face

Let H_{wbr} : refl_w =_{w=Mw} $\partial(wbr)$ be the filler homotopy of the face.

 T_2 must live in $T_1(\operatorname{refl}_w) =_{(\operatorname{link}(w) =_{\operatorname{BAut}(S^1)} \operatorname{link}(w))} T_1(\partial(wbr)) = R$

 T_2 must be a homotopy H_R : id = R between automorphisms of link(w).

For example, a path $H_R(g)$: g = Rg = o. Choose go.

Original inspiration

The definition of a connection

Definition If $\mathbb{M} \stackrel{\text{def}}{=} \mathbb{M}_0 \xrightarrow{\imath_0} \cdots \xrightarrow{\imath_{n-1}} \mathbb{M}_n$ is the realization of a combinatorial manifold and all the triangles commute in the diagram:

- The map f_k is a k-bundle on \mathbb{M} .
- The pair given by the map f_k and the proof $f_k \circ i_{k-1} = f_{k-1}$, i.e. that f_k extends f_{k-1} is called a k-connection on the (k-1)-bundle f_{k-1} .

The definition of curvature

Definition (cont.)

An extension consists of M_2 -many extensions to faces:

Here's the outer square for a single face F:

 $T_1(\partial(F))$ is the curvature at the face F and the filler \flat_F : id = $T_1(\partial F)$ is called a flatness structure for the face F.

The distinction between the path \flat_F and the endpoint $T_1(\partial(F))$ is small enough to be confusing.

Vector fields

Vector fields

Let $T: \mathbb{M} \to BS^1$ be an oriented tangent bundle on a 2-dim realization of a combinatorial manifold.

- Our bundles of mere circles can only model **nonzero** tangent vectors.
- A global section of this family would be a trivialization of T, so that's not a good definition.

Our solution:

- A vector field is a term $X : \prod_{m:\mathbb{M}_1} Tm$.
- It models a classical **nonvanishing** vector field on the 1-skeleton.
- We model classical zeros by omitting the faces.

Reminder: pathovers

- Recall pathovers (dependent paths).
- There is an asymmetry: we pick a fiber to display π , the path over p.
- Dependent functions map paths to pathovers: apd(X)(p) : tr_p(X(a)) = X(b) (simply denoted X(p)).

Next goal: define the index of a vector field on a face by computing $X(\partial F)$ around a face.

• Denote by X_1 this vector $X(v_1) : T_1$.

- Denote by X_1 this vector $X(v_1) : T_1$.
- Say *T*₂₁ is trivial. Denote the transported vector as thinner.

- Denote by X_1 this vector $X(v_1) : T_1$.
- Say *T*₂₁ is trivial. Denote the transported vector as thinner.
- Say *T*₃₂ rotates clockwise. Denote the twice-transported vector as dashed.

- Denote by X_1 this vector $X(v_1) : T_1$.
- Say *T*₂₁ is trivial. Denote the transported vector as thinner.
- Say *T*₃₂ rotates clockwise. Denote the twice-transported vector as dashed.
- Say *T*₁₃ is trivial. The thrice-transported vecor is dotted.

- X on e_{12} is red, etc.
- We translated all pathover data to the end of the loop.
- (Reminds me of scooping ice cream towards the last fiber.)
- The total pathover X(∂F) is called the swirling X_F of X at the face F.

Symbolic version

Index

$$tr_{F} \stackrel{\text{def}}{=} tr(\partial F) : T_{1} =_{BS^{1}} T_{1} \quad \text{curvature}$$

$$\flat_{F} \stackrel{\text{def}}{=} \flat(\partial F) : \text{id} =_{(T_{1} =_{BS^{1}} T_{1})} tr_{F} \quad \text{flatness}$$

$$X_{F} \stackrel{\text{def}}{=} X(\partial F) : tr_{F}(X_{1}) =_{T_{1}} X_{1} \quad \text{swirling}$$

(Recall that T_1 being an S^1 -torsor means we can use subtraction to obtain an equivalence $s(-, X_1) : T_1 \xrightarrow{x \mapsto x - X_1} S^1$.)

Definition

The **flattened swirling** of the vector field X on the face F is the loop

$$L_F^X \stackrel{\text{def}}{=} \flat_F(X_1) \cdot X_F : (X_1 =_{T_1} X_1).$$

The **index** of the vector field X on the face F is the integer I_F^X such that $\text{loop}_F^{I_F^X} =_{S^1} (L_F^X) - X_1$.

Main theorem

Simplifying swirling

Swirling involves concatenating dependent paths. Can we simplify that?

Pay off all our assumptions 1: torsor structure, vector field

 T_1 • Def: $\alpha_i \stackrel{\text{def}}{=} s(-, X_i) : T_i \stackrel{\sim}{\to} S^1$ (trivialization on 0-skeleton). • Def: $\rho_{ii} \stackrel{\text{def}}{=} \alpha_i(T_{ii}(X_i))$ is the rotation of T_{ii} . $T_{13}T_{32}T_{21}X_1$ $T_{13}T_{32}X_{21}$: $T_i \xrightarrow{T_{ji}} T_i$ $T_{13}T_{32}X_{2}$ $T_{13}X_{32}$: $S^1 \xrightarrow[(-)+\rho_{ii}]{} S^1$ $T_{13}X_{3}$ X₁₃: • Lemma: $\rho_{ij} = -\rho_{ji}$ because in T_j : $\rho_{ii} + \rho_{ii} + X_i = \rho_{ii} + T_{ii}X_i = T_{ii}(\rho_{ii} + X_i) = T_{ii}T_{ii}X_i = X_i$ X_1

Pay off all our assumptions 1: torsor structure, vector field (cont.)

 T_1 added: $T_{13}T_{32}T_{21}X_1$ $T_{13}T_{32}X_{21}$: $T_{13}T_{32}X_2$ $T_{13}X_{32}$: $T_{13}X_{3}$ *X*₁₃: translates X_{ii} to cat with X_{ii}). X_1

• Define $\sigma_{ji} \stackrel{\text{def}}{=} \alpha_j(X_{ji}) : \rho_{ji} =_{S^1}$ base,. • Paths of the form $(a = s_1 \text{ base})$ can be • + : $(a = base) \times (b = base) \rightarrow$ (a + b = base).• $p + q = (p + b) \cdot q$. • Lemma: $\sigma_{ii} + \sigma_{ii} = \text{refl}_{\text{base}}$. Proof: apd(X)(refl) = refl $\implies X_{ii} \cdot T_{ii} X_{ii} = \operatorname{refl}_{X_i}$ $\implies \sigma_{ii} + \sigma_{ii} = \text{refl}_{\text{base}}$ (T_{ii} just

Pay off all our assumptions 2: no boundary, commutativity

Definition Let F_1, \ldots, F_n be the faces of \mathbb{M} , $v_i : F_i$ be designated vertices, and $\partial F_i : v_i = v_i$ be the triangular boundaries. The total swirling is $X_{tot} \stackrel{\text{def}}{=} \sigma_{\partial F_1} + \cdots + \sigma_{\partial F_n}$ • We assume that this expression involves every edge once in each direction.

• *S*¹ is commutative, hence **complete cancellation**.

Consequence

$$\begin{aligned} \operatorname{tr}_{F} \stackrel{\operatorname{def}}{=} \operatorname{tr}(\partial F) & : \ T_{1} =_{BS^{1}} T_{1} & \operatorname{curvature} \\ \flat_{F} \stackrel{\operatorname{def}}{=} \flat(\partial F) & : \operatorname{id} =_{(\mathcal{T}_{1} =_{BS^{1}} \mathcal{T}_{1})} \operatorname{tr}_{F} & \operatorname{flatness} \\ X_{F} \stackrel{\operatorname{def}}{=} X(\partial F) & : \operatorname{tr}_{F}(X_{1}) =_{\mathcal{T}_{1}} X_{1} & \operatorname{swirling} \\ L_{F}^{X} \stackrel{\operatorname{def}}{=} \flat_{F}(X_{1}) \cdot X_{F} & : (X_{1} =_{\mathcal{T}_{1}} X_{1}) & \operatorname{flattened swirling} \end{aligned}$$

These can all be totaled in S^1 to give

$$\operatorname{tr}_{\operatorname{tot}} \stackrel{\operatorname{def}}{=} \sum_{i} \rho_{\partial F} = \operatorname{base} \qquad \qquad X_{\operatorname{tot}} \stackrel{\operatorname{def}}{=} \sum_{i} \sigma_{\partial F} = \operatorname{refl}_{\operatorname{base}}$$
$$\flat_{\operatorname{tot}} \stackrel{\operatorname{def}}{=} \sum_{i} \flat_{\partial F} \qquad \qquad L_{\operatorname{tot}}^{X} \stackrel{\operatorname{def}}{=} \sum_{i} \flat_{\partial F} + \sigma_{\partial F} = \sum_{i} \flat_{\partial F}$$

So in our lingo: the total flatness equals the total flattened swirling.

Examples

Each face contributes $\flat_F = H_R$, a 1/4-rotation. Total: 2.

For total index one obtains +1 from F_{wrg} , +1 from F_{ybo} , +0 from others. Total: 2.

Classical proof

Figure: Needham, T. (2021) Visual Differential Geometry and Forms.

- The classical proof is discrete-flavored.
- " $\angle Fw_{||}$ " looked a lot like a pathover.
- Hopf's Φ is defined on edges, not loops. We imitated that too.

Thank you!