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Summary

This work brings to HoTT

• connections, curvature, and vector fields

• the index of a vector field

• a theorem in dimension 2 that total curvature = total index
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Classical → HoTT

Let M be a smooth, oriented 2-manifold without boundary, FA the curvature of a
connection A on the tangent bundle, and X a vector field with isolated zeroes
x1, . . . , xn.

1

2π

∫

M
FA

n∑

i=1

indexX (xi ) χ(M)

∑

faces F

♭F
∑

faces F

LXF
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Classical index

Near an isolated zero there are only three possibilities: index 0, 1, –1.

Index is the winding number of the field as you move clockwise around the zero.

index 0 index +1 index +1 index +1 index +1 index –1
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Poincaré-Hopf theorem

The total index of a vector field is the Euler characteristic.

Examples:

Rotation: index +1 at each pole = 2 Height: index +1 at each pole = 2
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Gauss-Bonnet theorem

Total curvature divided by 2π is the Euler characteristic.

Curvature in 2D is a function FA : M → R.
∫
M FA sums the values at every point.

Positive and negative curvature cancel: 0 Constant curvature 1, area 4π: 2
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Plan

• Combinatorial manifolds

• Torsors and classifying maps

• Connections and curvature

• Vector fields

• Main theorem
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HoTT background

1 Symmetry,
Bezem, M., Buchholtz, U., Cagne, P., Dundas, B. I., and Grayson, D. R., (2021-)
https://github.com/UniMath/SymmetryBook.

2 Central H-spaces and banded types,
Buchholtz, U., Christensen, J. D. , Flaten, J. G. T., and Rijke, E. (2023)
arXiv:2301.02636

3 Nilpotent types and fracture squares in homotopy type theory,
Scoccola, L. (2020)
MSCS 30(5). arXiv:1903.03245
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Combinatorial manifolds
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Manifolds in HoTT

• Recall the classical theory of simplicial complexes

• Define a realization procedure to construct types
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Simplicial complexes

Definition
An abstract simplicial complex M of
dimension n is an ordered list of sets
M

def
= [M0, . . . ,Mn] consisting of
• a set M0 of vertices
• sets Mk of subsets of M0 of cardinality

k + 1
• downward closed: if F ∈ Mk and

G ⊆ F , |G | = j + 1 then G ∈ Mj

We call the truncated list
M≤k

def
= [M0, . . . ,Mk ] the k-skeleton of

M.

M2

M1

M0

{w ,b,r} {w ,r ,g} {w ,g ,o} {w ,o,b} {y ,b,r} {y ,r ,g} {y ,g ,o} {y ,o,b}

{w ,b} {w ,r} {w ,g} {w ,o} {b,r} {r ,g} {g ,o} {o,b} {y ,b} {y ,r} {y ,g} {y ,o}

w b r g o y

b

y

w

g
r

o
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Simplicial complexes

Example

The complete simplex of dimension n, denoted ∆(n), is the set {0, . . . , n} and its
power set. The (n − 1)-skeleton ∆(n)≤(n−1) is denoted ∂∆(n) and will serve as a
combinatorial (n − 1)-sphere.

∆(1) is visually 0 1 , ∂∆(1) is visually 0 1 ,

∆(2) is visually
0

1

2
, ∂∆(2) is visually

0

1

2
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Homotopy realization: dimension 0

We will realize simplicial complexes by means of a sequence of pushouts.

Base case: the realization M of a 0-dimensional complex M is M0.

In particular the 0-sphere ∂∆∆(1)
def
= ∂∆(1)0.
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Homotopy realization: dimension 1

For a 1-dim complex M
def
= [M0,M1] the realization is given by

M1 × ∂∆∆(1) M1

M0 = M0 M1

pr1

A0
∗M1h1 ⌜
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Homotopy realization: dimension 1

For example the simplicial 1-sphere ∂∆∆(2)
def
=

0

1

2
is given by

∂∆(2)1 × ∂∆∆(1) ∂∆(2)1

∂∆(2)0 ∂∆∆(2)

h1

⌜ i.e.

{{0,1},{1,2},{2,0}}×{0,1} {{0,1},{1,2},{2,0}}

{0,1,2} ∂∆∆(2)
h1

⌜
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Homotopy realization: dimension 1

Or the 1-skeleton of the octahedron O:

{{w , g}, . . .} × {0, 1} {{w , g}, . . .}

{w , g , . . .} O1

h1 ⌜

b

y

w

g
r

o
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Homotopy realization: dimension 2

To realize M
def
= [M0,M1,M2] use ∂∆∆(1), ∂∆∆(2):

M1 × ∂∆∆(1) M1

M0 = M0 M1 M2

M2 × ∂∆∆(2) M2

pr1

A0
∗M1h1 ⌜

h2
⌜

A1

pr1

∗M2
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Homotopy realization: dimension 2

The full octahedron O:

{{w , g}, . . .} × {0, 1} {{w , g}, . . .}

{w , g , . . .} O1 O2

{{w , g , r}, . . .} × ∂∆∆(2) {{w , g , r}, . . .}

pr1

h1 ⌜

h2
⌜

pr1

b

y

w

g
r

o
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Homotopy realization: dimension 2

b

y

w

g
r

o

← link(w)

The link of a vertex w in a 2-complex is: the sets
not containing w but whose union with w is a face.

A combinatorial manifold is a simplicial complex
all of whose links are∗ simplicial spheres.

This will be our model of the tangent space.

∗the (classical) geometric realization is homeomorphic to a sphere
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Combinatorial manifolds ↔ smooth manifolds

Theorem (Whitehead (1940))

Every smooth n-manifold has a compatible structure of a combinatorial manifold: a
simplicial complex of dimension n such that the link is a combinatorial (n − 1)-sphere,
i.e. its geometric realization is an (n − 1)-sphere.

https://ncatlab.org/nlab/show/triangulation+theorem

Counterexample: Wikipedia says this is a simplicial complex, but we can see it fails the
link condition:
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Torsors
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What type families M→ U will we consider? Families of torsors, also called principal
bundles.
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Torsors

Let G be a (higher) group.

Definition
• A right G -object is a type X equipped with a homomorphism ϕ : G op → Aut(X ).
• X is furthermore a G -torsor if it is inhabited and the map
(pr1, ϕ) : X × G → X × X is an equivalence.
• The inverse is (pr1, s) where s : X × X → G is called subtraction (when G is
commutative).
• Let BG be the type of G -torsors.
• Let Greg be the G -torsor consisting of G acting on itself on the right.
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Facts

1 Ω(BG ,Greg) ≃ G and composition of loops corresponds to multiplication in G .

2 BG is connected.

3 1 & 2 =⇒ BG is a K(G , 1).

See the Buchholtz et. al. H-spaces paper for more.

25 / 57



How to map into BS1

To construct maps into BS1 we lift a family of mere circles.

BS1 BAut(S1)
def
=
∑

Y :U ||Y = S1||−1 U

families of:

M

torsors
mere
circles types

We will assume we have such a lift when we need it. (Remark: the lift is a choice of
orientation.)

Other names:

• BAut(S1) = BO(2) = EM(Z, 1) (where EM(G , n)
def
= BAut(K(G , n)))

• BS1 = BSO(2) = K(Z, 2)

26 / 57



Connections and curvature
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Connections

Connections are extensions of a bundle to higher skeleta.
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Recall link

b

y

w

g
r

o

← link(w)
The link of a vertex w in a 2-complex is: the sets
not containing w but whose union with w is a face.

Define the tangent bundle on a combinatorial manifold to be

T0
def
= link : M0 → BAut(S1).
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Connections on the tangent bundle

An extension T1 of T0 to M1 is called a connection on the tangent bundle.

M0 M1 M2

BAut(S1)
T0

def
=link

T1
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T1 : M1 → BAut(S1) extending link

We will define T1 on the edge wb, so we need a term
T1(wb) : link(w) =BAut(S1) link(b).

We imagine tipping:

b

y

w

g
r

o
−→ b

y

w

g
r

o

T1(g : link(w))
def
= w : link(b), . . ..

Use this method to define T1 on every edge.
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T1 : M1 → BAut(S1) extending link

Denote the path wb · br · rw by ∂(wbr). Consider T1(∂(wbr)):

b

y

w

g
r

o
b

y

w

g
r

o
b

y

w

g
r

o
b

y

w

g
r

o

We come back rotated by 1/4 turn. Call this rotation R : link(w) =BAut(S1) link(w).
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Extending T1 to a face
Let Hwbr : reflw =w=Mw ∂(wbr) be the filler homotopy of the face.

T2 must live in T1(reflw ) =(link(w)=BAut(S1)link(w)) T1(∂(wbr)) = R

T2 must be a homotopy HR : id = R between automorphisms of link(w).

For example, a path HR(g) : g = Rg = o. Choose go.

b

y

w

g
r

o
b

y

w

g
r

o
b

y

w

g
r

o
b

y

w

g
r

o
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Original inspiration

→ → →
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The definition of a connection

Definition
If M def

= M0
ı0−→ · · · ın−1−−→Mn is the realization of a combinatorial manifold and all the

triangles commute in the diagram:

M0 M1 M2 · · · Mn

U

ı0

f0

ı1

f1

ı2

f2

ın−1

fn

• The map fk is a k-bundle on M.
• The pair given by the map fk and the proof fk ◦ ık−1 = fk−1, i.e. that fk extends
fk−1 is called a k-connection on the (k − 1)-bundle fk−1.
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The definition of curvature

Definition (cont.)

An extension consists of M2-many extensions to
faces:

M2 × ∂∆∆(2) M2

M1 M2

U

pr1

A1

h2

T1

⌜
T2

Here’s the outer square for a single
face F :

{F} × ∂∆∆(2) {F}

M1 U

pr1

A1
♭F

T1(∂(F )) is the curvature at the face F and the filler ♭F : id = T1(∂F ) is called a
flatness structure for the face F .
The distinction between the path ♭F and the endpoint T1(∂(F )) is small enough to be
confusing.
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Vector fields
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Vector fields

Let T : M→ BS1 be an oriented tangent bundle on a 2-dim
realization of a combinatorial manifold.
• Our bundles of mere circles can only model nonzero
tangent vectors.
• A global section of this family would be a trivialization
of T , so that’s not a good definition.

Our solution:
• A vector field is a term X :

∏
m:M1

Tm.
• It models a classical nonvanishing vector field on the

1-skeleton.
• We model classical zeros by omitting the faces.

∗

M BS1

S1X

T

b

y

w

g
r

o
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Reminder: pathovers

𝛼

p

a b
M

P

pr1

β

tr(p)𝛼

tr(p)
T(a) T(b)

π • Recall pathovers (dependent paths).
• There is an asymmetry: we pick a fiber to display

π, the path over p.
• Dependent functions map paths to pathovers:

apd(X )(p) : trp(X (a)) = X (b) (simply denoted
X (p)).
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Next goal: define the index of a vector field on a face by computing X (∂F ) around a
face.
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v1 v3

v2

e23e12

e31
T1

T2

T3

An example of swirling and
index at this face.
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v1 v3

v2

e23e12

e31
T1

T2

T3

An example of swirling and
index at this face.
• Denote by X1 this vector
X (v1) : T1.
•

•

•
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v1 v3

v2

e23e12

e31
T1

T2

T3

An example of swirling and
index at this face.
• Denote by X1 this vector
X (v1) : T1.
• Say T21 is trivial. Denote
the transported vector as
thinner.
•

•
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v1 v3

v2

e23e12

e31
T1

T2

T3

An example of swirling and
index at this face.
• Denote by X1 this vector
X (v1) : T1.
• Say T21 is trivial. Denote
the transported vector as
thinner.
• Say T32 rotates
clockwise. Denote the
twice-transported vector
as dashed.
•
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v1 v3

v2

e23e12

e31
T1

T2

T3

An example of swirling and
index at this face.
• Denote by X1 this vector
X (v1) : T1.
• Say T21 is trivial. Denote
the transported vector as
thinner.
• Say T32 rotates
clockwise. Denote the
twice-transported vector
as dashed.
• Say T13 is trivial. The
thrice-transported vecor
is dotted.
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v1 v3

v2

e23e12

e31
T1

T2

T3

• X on e12 is red, etc.
• We translated all
pathover data to the end
of the loop.
• (Reminds me of scooping
ice cream towards the
last fiber.)
• The total pathover
X (∂F ) is called the
swirling XF of X at the
face F .
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Symbolic version

T1 T2 T3 T1

T13T32T21X1

T32T21X1 T13T32X2

T21X1 T32X2 T13X3

X1 X2 X3 X1

T21 T32 T13

T13T32X21:

X21:

T32X21: T13X32:

X32: X13:
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Index

trF
def
= tr(∂F ) : T1 =BS1 T1 curvature

♭F
def
= ♭(∂F ) : id =(T1=BS1T1) trF flatness

XF
def
= X (∂F ) : trF (X1) =T1 X1 swirling

(Recall that T1 being an S1-torsor means we can use subtraction to obtain an

equivalence s(−,X1) : T1
x 7→x−X1−−−−−→ S1.)

Definition
The flattened swirling of the vector field X on the face F is
the loop

LXF
def
= ♭F (X1) · XF : (X1 =T1 X1).

The index of the vector field X on the face F is the integer
IXF such that loopI

X
F =S1 (LXF )− X1.

v1 ♭F (X1)

X21

X32

X13
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Main theorem
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Simplifying swirling

Swirling involves concatenating dependent paths. Can we simplify that?
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Pay off all our assumptions 1: torsor structure, vector field

T1

T13T32T21X1

T13T32X2

T13X3

X1

T13T32X21:

T13X32:

X13:

• Def: αi
def
= s(−,Xi ) : Ti

∼→ S1 (trivialization on 0-skeleton).

• Def: ρji
def
= αj(Tji (Xi )) is the rotation of Tji .

Ti Tj

S1 S1

Tji

αi αjbase7→Xi

(−)+ρji

base7→Xj

• Lemma: ρij = −ρji because in Tj :
ρij + ρji + Xj = ρij + TjiXi = Tji (ρij + Xi ) = TjiTijXj = Xj .
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Pay off all our assumptions 1: torsor structure, vector field (cont.)

T1

T13T32T21X1

T13T32X2

T13X3

X1

T13T32X21:

T13X32:

X13:

• Define σji
def
= αj(Xji ) : ρji =S1 base,.

• Paths of the form (a =S1 base) can be
added:
• + : (a = base)× (b = base)→

(a+ b = base).
• p + q = (p + b) · q.

• Lemma: σij + σji = reflbase.
• Proof: apd(X )(refl) = refl

=⇒ Xij · TijXji = reflXi

=⇒ σij + σji = reflbase (Tij just
translates Xji to cat with Xji ).

X(a)

p

a b
M

P

pr1

X(b)

tr(p)X(a)

tr(p)
T(a) T(b)

X(p)

tr(p–1)X(b)

X(p–1) tr(p–1)X(p)
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Pay off all our assumptions 2: no boundary, commutativity

Simplicial complexes

Definition
An abstract simplicial complex M of
dimension n is an ordered list of sets
M

def
= [M0, . . . ,Mn] consisting of
• a set M0 of vertices
• sets Mk of subsets of M0 of cardinality

k + 1
• downward closed: if F ∈ Mk and

G ⊆ F , |G | = j + 1 then G ∈ Mj

We call the truncated list
M≤k

def
= [M0, . . . ,Mk ] the k-skeleton of

M.

M2

M1

M0

{w ,b,r} {w ,r ,g} {w ,g ,o} {w ,o,b} {y ,b,r} {y ,r ,g} {y ,g ,o} {y ,o,b}

{w ,b} {w ,r} {w ,g} {w ,o} {b,r} {r ,g} {g ,o} {o,b} {y ,b} {y ,r} {y ,g} {y ,o}

w b r g o y

b

y

w

g
r

o↻ ↻

↻↻

Definition
Let F1, . . . ,Fn be the faces of M, vi : Fi be designated vertices, and
∂Fi : vi = vi be the triangular boundaries. The total swirling is

Xtot
def
= σ∂F1 + · · ·+ σ∂Fn

.

• We assume that this expression involves every edge once in each
direction.
• S1 is commutative, hence complete cancellation.

53 / 57



Consequence

trF
def
= tr(∂F ) : T1 =BS1 T1 curvature

♭F
def
= ♭(∂F ) : id =(T1=BS1T1) trF flatness

XF
def
= X (∂F ) : trF (X1) =T1 X1 swirling

LXF
def
= ♭F (X1) · XF : (X1 =T1 X1) flattened swirling

These can all be totaled in S1 to give

trtot
def
=
∑

i

ρ∂F = base

♭tot
def
=
∑

i

♭∂F

Xtot
def
=
∑

i

σ∂F = reflbase

LXtot
def
=
∑

i

♭∂F + σ∂F =
∑

i

♭∂F

So in our lingo: the total flatness equals the total flattened swirling.
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Examples

b

y

w

g
r

o
b

y

w

g
r

o
b

y

w

g
r

o
b

y

w

g
r

o

Each face contributes ♭F = HR , a 1/4-rotation. Total: 2.

b

y

w

g
r

o
For total index one obtains +1 from Fwrg , +1 from Fybo , +0 from
others. Total: 2.
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Classical proof
26.3 Hopf’s Intrinsic Proof of the Global Gauss–Bonnet Theorem • 259

U

F

wF

s

w0

R(∆)
w w

[26.2] The difference R(∆)− 2π IF(s) can be found by
summing over the edges Kj the change Φ(Kj) in the
illustrated angle ∠Fw||, i.e., the rotation of w|| relative to F.

page 209, this universal index sum
must equal χ(Sg)= 2− 2g, thereby pro-
ving the Poincaré–Hopf Theorem. Thus,
if we can prove (26.2), we will also have
our proof of GGB:

K(Sg)= 2πχ(Sg).

To begin to understand (26.2), con-
sider [26.2] which shows the same
geodesic triangle ∆ as before, and the
same vector w|| parallel-transported
around its boundary. But now the
figure also imagines a vector field F
on the surface, with a singular point
s within ∆. (Here we have specifically
pictured a source, but the argument
applies to any singular point.)

From this figure we deduce that,

K(∆)− 2π IF(s) = R(∆)− δ∆ (∠UF)

=
∑

j

[
RU(Kj)− δKj

(∠UF)
]

=
∑

j

[
δKj

(∠Uw||)− δKj
(∠UF)

]

=
∑

j

δKj
(∠Fw||).

The final expression measures the rotation of w|| relative to F; it is manifestly independent of the
arbitrary fiducial vector field U.

To simplify matters, let us adopt Hopf’s notation, and define Φ(Kj) to be the net rotation along
Kj of w|| relative to F, i.e., the net change in the angle between the vector field F and the parallel-transported
vector w|| as we traverse Kj:

Φ(Kj)≡ δKj
(∠Fw||).

NOTE: Φ(Kj) is independent of the choice of w||, for the same reason that RU(Kj) was.
Then the previous result may be written

K(∆)− 2π IF(s)=
∑
jΦ(Kj). (26.3)

Clearly, this result holds equally well if ∆ is replaced with a polygon, and we also remind the
reader that this conclusion does not require that the edges be geodesics.

As usual, let (−Kj) denote Kj traversed in the opposite direction. Since parallel transport does
not depend on the direction in which a curve is traversed, we deduce that

Figure: Needham, T. (2021) Visual Differential
Geometry and Forms.

• The classical proof is discrete-flavored.
• “∠Fw||” looked a lot like a pathover.
• Hopf’s Φ is defined on edges, not
loops. We imitated that too.
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Thank you!

57 / 57


	Summary
	Combinatorial manifolds
	Torsors
	Connections and curvature
	Vector fields
	Main theorem

