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Summary

This work brings to HoTT
® connections, curvature, and vector fields
® the index of a vector field

® 3 theorem in dimension 2 that total curvature = total index
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Classical — HoTT

Let M be a smooth, oriented 2-manifold without boundary, F4 the curvature of a
connection A on the tangent bundle, and X a vector field with isolated zeroes
X1y---3Xn.
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Classical index

Near an isolated zero there are only three possibilities: index 0, 1, —1.

Index is the winding number of the field as you move clockwise around the zero.
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index 0 index +1 index +1 |ndex +1 |ndex +1 index —1
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Poincaré-Hopf theorem

The total index of a vector field is the Euler characteristic.

Examples:

Rotation: index +1 at each pole = 2 Height: index 41 at each pole = 2
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Gauss-Bonnet theorem

Total curvature divided by 27 is the Euler characteristic.
Curvature in 2D is a function F4 : M — R.

Jiy Fa sums the values at every point.

Positive and negative curvature cancel: 0 Constant curvature 1, area 47: 2
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Plan

Combinatorial manifolds

Torsors and classifying maps

Connections and curvature

Vector fields

Main theorem
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HoT T background

@ Symmetry,
Bezem, M., Buchholtz, U., Cagne, P., Dundas, B. |., and Grayson, D. R., (2021-)
https://github.com/UniMath/SymmetryBook.

® Central H-spaces and banded types,
Buchholtz, U., Christensen, J. D. , Flaten, J. G. T., and Rijke, E. (2023)
arXiv:2301.02636

© Nilpotent types and fracture squares in homotopy type theory,
Scoccola, L. (2020)
MSCS 30(5). arXiv:1903.03245
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Combinatorial manifolds
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Manifolds in HoTT

® Recall the classical theory of simplicial complexes

® Define a realization procedure to construct types
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Simplicial complexes

Mo {wib.r} {wr.g} {w.g.0} (wo.b} {y.b.r} {y.r.g} {y.g.0} {y.0b}

Definition
An abstract simplicial complex M of M (W) (wr) (wel {WA,} (el gg,ob} ) e} o}
dimension n is an ordered list of sets e I
m & [Mo, ..., M,] consisting of Mo \\\P/"Er’//

® 3 set My of vertices w

® sets My of subsets of My of cardinality

k+1
e downward closed: if F € My and g

GCF, |G| =j+1then Ge M
We call the truncated list
Mcy % [Mo, ..., My] the k-skeleton of

M.
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Simplicial complexes

Example

The complete simplex of dimension n, denoted A(n), is the set {0,...,n} and its
power set. The (n — 1)-skeleton A(n)<(,—1) is denoted A(n) and will serve as a
combinatorial (n — 1)-sphere.

A(1) is visually 0 1, OA(1) is visually 0 «1,

1 1
A(2) is visually A , OA(2) is visually A
0 2 0 2
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Homotopy realization: dimension 0

We will realize simplicial complexes by means of a sequence of pushouts.

Base case: the realization M of a 0-dimensional complex M is Mj.

In particular the O-sphere OA(1) def 0A(1)o.
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Homotopy realization: dimension 1

For a 1-dim complex M o [Mo, M4] the realization is given by

My x OA(1) — My
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Homotopy realization: dimension 1

1
For example the simplicial 1-sphere OA(2) def A is given by
0 2

6A(2)1 X 8A(]-) - aA(2)1 {{071}7{172}7{270}}X{Ovl} — {{071}7{172}7{210}}
l /hl? ; l ie. l /fu7 5 l
IA(2)o —— IA(2) 012} IA(2)
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Homotopy realization: dimension 1

Or the 1-skeleton of the octahedron Q:

Hw,g},.. .} x{0,1} —— {{w,g},.. .}

{W,g,...} J>@1

D\
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Homotopy realization: dimension 2

To realize M % [MO, My, Ms] use OA(1), OA(2):

My x OA(1) — 22— My
Aol / l
Mo = -

M2 X 8&(2) T} M2

M
AIT \hz ' T*MQ
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Homotopy realization: dimension 2

The full octahedron Q:
w

{{w,g},...} x{0,1} —— {{w.g},...}
| = . | & b
{w,g,...} s O - >1(D)2 \'
[~ ]

{{w.g,r}, ...} x 0A(2) 52 {{w.g,r}, ...} y
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Homotopy realization: dimension 2

The link of a vertex w in a 2-complex is: the sets
not containing w but whose union with w is a face.

A

all of whose links are® simplicial spheres.

’ b  link(w) A combinatorial manifold is a simplicial complex

This will be our model of the tangent space.

*the (classical) geometric realization is homeomorphic to a sphere
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Combinatorial manifolds < smooth manifolds

Theorem (Whitehead (1940))

Every smooth n-manifold has a compatible structure of a combinatorial manifold: a
simplicial complex of dimension n such that the link is a combinatorial (n — 1)-sphere,
i.e. its geometric realization is an (n — 1)-sphere.

https://ncatlab.org/nlab/show/triangulation+theorem

Counterexample: Wikipedia says this is a simplicial complex, but we can see it fails the
link condition:

&
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Torsors
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What type families Ml — U will we consider? Families of torsors, also called principal
bundles.
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Torsors

Let G be a (higher) group.
Definition
® A right G-object is a type X equipped with a homomorphism ¢ : G°P — Aut(X).
® X is furthermore a G-torsor if it is inhabited and the map
(pri,¢) : X x G — X x X is an equivalence.

® The inverse is (prq,s) where s : X x X — G is called subtraction (when G is
commutative).

® |et BG be the type of G-torsors.
® Let Gpeg be the G-torsor consisting of G acting on itself on the right.
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Facts

® Q(BG, Greg) ~ G and composition of loops corresponds to multiplication in G.
® BG is connected.
©®1&2 = BGisaK(G,1).

See the Buchholtz et. al. H-spaces paper for more.
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How to map into BS?

To construct maps into BS* we lift a family of mere circles.

BS! —— BAut(SH) ' S |V =S| —— U
T

families of: torsors circles
\

M

types

We will assume we have such a lift when we need it. (Remark: the lift is a choice of
orientation.)
Other names:

* BAut(S!) = BO(2) = EM(Z,1) (where EM(G, n) & BAut(K(G, n)))

o BS! = BSO(2) = K(Z,2)
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Connections and curvature
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Connections

Connections are extensions of a bundle to higher skeleta.
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Recall link

A

’ b The link of a vertex w in a 2-complex is: the sets

' < link(w) not containing w but whose union with w is a face.

y

Define the tangent bundle on a combinatorial manifold to be
To %' link : My — BAut(SY).
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Connections on the tangent bundle

An extension T; of Ty to Mj is called a connection on the tangent bundle.

Mo > Ml > MQ
\ -
i T 7
T(f‘imf4 v
BAut(S?!)
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T1 : M; — BAut(S?) extending link

We will define T; on the edge wb, so we need a term
T1(wb) : link(w) =gaut(s) link(b).

We imagine tipping:

w w

)N
=GP

y y

T1(g : link(w)) © link(b), .. ..
Use this method to define T; on every edge.
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T1 : M; — BAut(S?) extending link

Denote the path wb - br - rw by d(wbr). Consider T1(0(wbr)):

We come back rotated by 1/4 turn. Call this rotation R : link(w) =gau¢(s1y link(w).
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Extending T; to a face
Let Hupr : refly, ==, w O(wbr) be the filler homotopy of the face.
T> must live in T1(reﬂw) :(“”k(W):BAut(sl)“"k(W)) Tl(a(Wbr)) =R
T, must be a homotopy Hg : id = R between automorphisms of link(w).

For example, a path Hr(g) : g = Rg = o. Choose go.
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Original inspiration

y ¥ ¥ ¥
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The definition of a connection

Defindition

Tn— . . . . . .
If M= M 20,02 M, is the realization of a combinatorial manifold and all the
triangles commute in the diagram:

2 7 2 1n—1
My —— M; —— M, —— .. » M,
f
U

® The map fi is a k-bundle on M.
® The pair given by the map f, and the proof fy 01,1 = fr_1, i.e. that f, extends
fx—1 is called a k-connection on the (k — 1)-bundle f_;.
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The definition of curvature

Definition (cont.)

An extension consists of M>-many extensions to Here's the outer square for a single
faces: face F:
My x OA(2) 25 M, o,
h F} x OA(2) —— {F
W | (F} x 98(@2) " {F)

Ml E— M2 All /bF \L

4 sz M ——— U
Ty

T1(0(F)) is the curvature at the face F and the filler br : id = T1(0F) is called a
flatness structure for the face F.

The distinction between the path bg and the endpoint T1(9(F)) is small enough to be
confusing.
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Vector fields
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Vector fields

Let T : M — BS! be an oriented tangent bundle on a 2-dim
realization of a combinatorial manifold.
® Qur bundles of mere circles can only model nonzero
tangent vectors.
e A global section of this family would be a trivialization
of T, so that’s not a good definition.

Our solution:
* A vector field is a term X : [], ., Tm.
® |t models a classical nonvanishing vector field on the
1-skeleton.
® \We model classical zeros by omitting the faces.
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Reminder: pathovers

® Recall pathovers (dependent paths).

V ® There is an asymmetry: we pick a fiber to display
m, the path over p.
pri ® Dependent functions map paths to pathovers:
apd(X)(p) : trp(X(a)) = X(b) (simply denoted
X(p
M
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Next goal: define the index of a vector field on a face by computing X(JF) around a
face.
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Ty

V2

T>
€12 €23
< ®
Vi €31 V3

T3

An example of swirling and
index at this face.
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An example of swirling and
index at this face.
® Denote by Xj this vector

X(vi): T1.
[ ]
[ ]
| 3 .
T1 | <z . : T3
1 Vi 31 1 V3 |
[ . I I
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An example of swirling and
index at this face.
® Denote by Xj this vector
X(v1): T1.
® Say Ty is trivial. Denote
the transported vector as
thinner.

€31 ! v3
|
|
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An example of swirling and
index at this face.
® Denote by Xi this vector
X(Vl) . T1.
® Say Ty is trivial. Denote
the transported vector as
thinner.
® Say T3 rotates
clockwise. Denote the
twice-transported vector
as dashed.

€31
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An example of swirling and
index at this face.
® Denote by Xi this vector
X(Vl) . Tl.
® Say Ty is trivial. Denote
the transported vector as
thinner.
® Say T3 rotates
clockwise. Denote the
twice-transported vector

| l as dashed.

T -~ — ; o T3 ® Say T3 is trivial. The
! ’1... | 31 ! V3t ; thrice-transported vecor
L] 4 oo Y is dotted.
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Ty

X on ey is red, etc.

® \We translated all

pathover data to the end
of the loop.

(Reminds me of scooping
ice cream towards the
last fiber.)

The total pathover
X(OF) is called the
swirling Xr of X at the
face F.
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Symbolic version

T2

T3

T3

71 7& 7} a 71
T13T32To1 X1
T13 Ta2 Xo1: |
T32T21 X1 T13 732X
Ta2Xo1:|| Ti3Xa2:|
To1 X1 T3 X2 T13X3

Xo1:| Xa2:| Xus:|

X1 X2 X3 X1

47 /57



Index

tre déftr(aF) Ty =ps1 Tq curvature
b & b(OF)  :id =(1y=,,1y) trr flatness
Xr & X(0F) trp(X) =7, X1 swirling

(Recall that Ty being an S*-torsor means we can use subtraction to obtain an

equivalence s(—, X1) : Ty =22, g1))
Definition X13
The flattened swirling of the vector field X on the face F is A 21
the loop
X32 V bF(Xl)
def -
Lé = bF(Xl) . XF . (X1 =T Xl). FI, {
The index of the vector field X on the face F is the integer ) Xo1

IX such that loop’ =g (LX) — X;.
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Main theorem
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Simplifying swirling

Swirling involves concatenating dependent paths. Can we simplify that?
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Pay off all our assumptions 1: torsor structure, vector field

T
* Def: o; & s(—, X;) : T; = S! (trivialization on 0-skeleton).
def . .
® Def: pji = «j(T;i(Xj)) is the rotation of Tj.
T13T32 T21 X1
T13 T32Xo1: T Tii T;
7_13 T32X2 base— X; <‘a,i J’Oéj> base— X;
T13X32: st sl
T13X3 e
Xi3: ® Lemma: p; = —pj; because in T;:
X, pij + pji + X = pij + TjiXi = Tjipi + Xi) = T;i TyX; = X;.
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Pay off all our assumptions 1: torsor structure, vector field (cont.)

T1

T13T32 T21 X1
T13T32X01:
T13T32X2
T13X32:
T13X3

Xi3:

X1

® Lemma: oj; + 0ji = reflpase.
® Proof: apd(X)(refl) = refl

Define Oji déf aj(Xj,-) L Pji =st base,.
Paths of the form (a =g:1 base) can be
added:
® +:(a=base) x (b= base) —
(a4 b = base).
*ptqg=(p+tb) g

— XU . Tij)<ji = reﬂx,. p
M e

= 0ojjtoji = reflpase (T,'J' just a b
translates Xj; to cat with Xj;).
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Pay off all our assumptions 2: no boundary, commutativity

Definition
Let F1,..., F, be the faces of M, v; : F; be designated vertices, and
OF; : vi = v; be the triangular boundaries. The total swirling is

def
b Xiot = 09F, + -+ 00F,

® We assume that this expression involves every edge once in each
direction.
e Sl is commutative, hence complete cancellation.
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Consequence

trp & tr(0F) :Ti=pst T1 curvature

b 2 b(OF) id =(1y=,, 1y) trr flatness

Xr % X(0F) tre(X1) =7, X1 swirling
LEhe(X0) Xe (X =1, X4) flattened swirling

These can all be totaled in S! to give

def def
trot = ZP@F = base Xiot = ZUaF = reflpase

1 1
def X def
ot = D boF L S bor +0or = > _bor
i i i

So in our lingo: the total flatness equals the total flattened swirling.

O
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Examples

Each face contributes bg = Hg, a 1/4-rotation. Total: 2.
w

g > b For total index one obtains +1 from F,, +1 from F;,, +0 from

" others. Total: 2.

y
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Classical proof

® The classical proof is discrete-flavored.

® “ZFw)" looked a lot like a pathover.

® Hopf's @ is defined on edges, not
loops. We imitated that too.

[26.2] The difference R(A)—2mIr(s) can be found by

summing over the.edges Kj the change ®(Kj) in the
illustrated angl i.e., the rotation of w, relative to F.

Figure: Needham, T. (2021) Visual Differential
Geometry and Forms.

56 /57



Thank you!
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