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Abstract

Higher inductive types can capture some concepts of differential geometry in two dimensions in-

cluding connections, curvature, and vector fields. We define connections on higher inductive types.

We then define tangent bundles and vector fields by looking at the special subclass of combinatorial

manifolds, which are discrete in the sense of real cohesion[1], drawing inspiration from the field of

discrete differential geometry. We prove the Gauss-Bonnet theorem and Poincaré-Hopf theorem

for combinatorial manifolds.

“It is always ourselves we work on, whether we realize it or not. There is no other

work to be done in the world.” — Stephen Talbott, The Future Does Not Compute[2]

1 Overview

We will define

• combinatorial 2-manifolds

• circle bundles, and principal circle bundles of tangent bundles

• vector fields,

and then observe emerging from those definitions the presence of

• connections

• curvature

• the index of a vector field,

and prove

• the Gauss-Bonnet theorem

• and the Poincaré-Hopf theorem.

We will consider functions M → EM(ℤ, 1) where EM(ℤ, 1) is the connected component in the

universe of the Eilenberg-MacLane space K(ℤ, 1) which we will take to be S1, and whereM is a
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combinatorial manifold of dimension 2, which is a simplicial complex encoded in a higher inductive

type, such that each vertex has a neighborhood that looks like a disk with a discrete circle boundary

(i.e. a polygon). We can call terms C : EM(ℤ, 1) “mere circles.”

We will see in Section 3.4 that EM(ℤ, 1) contains all the polygons. We will construct a map link :
M → EM(ℤ, 1) that maps each vertex to the polygon consisting of its neighbors. Then we can

consider the type of pointed mere circles EM•(ℤ, 1)
def
=

∑
Y :EM(ℤ,1)Y as well as the first projection

that forgets the point. This is a univalent fibration (univalent fibrations are always equivalent to a

projection of a type of pointed types to some connected component of the universe[3]). If we form

the pullback

P EM•(ℤ, 1)

M EM(ℤ, 1)

pr1

ù
pr1

link

then we have a bundle of mere circles, with total space given by the
∑
-type construction. We will

show that this is not a principal bundle, i.e. a bundle of torsors. Torsors are types with the additional

structure of a group action. But if link satisfies an additional property (amounting to an orientation)

then the pullback is a principal fibration, i.e. link factors through a map K(ℤ, 2) → EM(ℤ, 1),
where K(ℤ, 2) is an Eilenberg-Mac Lane space.

We will argue that extending link to a function T on paths can be thought of as constructing a

connection, notably one that is not necessarily flat (trivial). Moreover, lifting T to T• : M →
EM•(ℤ, 1) can be thought of as a nonvanishing vector field. There will in general not be a total

lift, just a partial function. The domain ofT• will have a boundary of circles, and the degree (winding
number) on the disjoint union of these can be thought of as the index ofT•. We can then examine

the total curvature and the total index and prove that they are equal, and argue that they are equal

to the usual Euler characteristic. This will simultaneously prove the Poincaré-Hopf theorem and

Gauss-Bonnet theorem in 2 dimensions, for combinatorial manifolds. This is similar to the classical

proof of Hopf[4], presented in detail in Needham[5].

1.1 Future work

The results of this note can be extended in many directions. There are higher-dimensional gen-

eralizations of Gauss-Bonnet, including the theory of characteristic classes and Chern-Weil theory

(which links characteristic classes to connections and curvature). These would involve working with

nonabelian groups like SO(n) and sphere bundles. Results from gauge theory could be imported

into HoTT, as well as results from surgery theory and other topological constructions that may be

especially amenable to this discrete setting. Relationships with computer graphics and discrete dif-

ferential geometry[6][7] could be explored. Finally, a theory that reintroduces smoothness could

allow more formal versions of the analogies explored here.

2 Torsors and principal bundles

The classical theory of principal bundles tells us to look for an appropriate classifying space of torsors

to map into.
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Definition 2.1. Let G be a group with identity element e (with the usual classical structure and

properties). A G-set is a set X equipped with a homomorphism 𝜙 : (G , e) → Aut(X). If in

addition we have a term

is_torsor : | |X | |−1 ×
∏
x:X

is_equiv(𝜙(−, x) : (G , e) → (X , x))

then we call this data aG-torsor. Denote the type ofG-torsors by BG.

If (X , 𝜙) , (Y , 𝜓) : BG then aG-equivariant map is a function f : X →Y such that f (𝜙(g , x)) =
𝜓 (g , f (x)). Denote the type ofG-equivariant maps by X →G Y .

Lemma 2.1. There is a natural equivalence (X =BG Y ) ' (X →G Y ). �

Denote by ∗ the torsor given byG actions on its underlying set by left-translation. This serves as a

basepoint for BG and we have a group isomorphism ΩBG ' G.

Lemma 2.2. AG-set (X , 𝜙) is aG-torsor if and only if there merely exists aG-equivariant equiv-

alence ∗ →G X . �

Corollary 2.1. The pointed type (BG , ∗) is a K(G , 1). �

In particular, to classify principal S1-bundles we map into the space K(S1 , 1), a type of torsors of
the circle. Since S1 is a K(ℤ, 1), we have K(S1 , 1) ' K(ℤ, 2).

2.1 Bundles of mere circles

We find it illuminating to look also at the slightly more general classifying space ofK(ℤ, 1)-bundles,
that is bundles whose fiber are equivalent to K(ℤ, 1). We can understand very well when these are

in fact bundles of circle torsors, which will in turn shed light on orientation in this setting.

We will follow Scoccola[8]. We will state the definitions and theorems for a general K(G , n) but
we will be focusing on n = 1 in this note.

Definition 2.2. Let EM(G , n) def
= BAut(K(G , n)) def

=
∑
Y :U | |Y ' K(G , n) | |−1. A K(G , n)-

bundle on a typeM is the fiber of a mapM → EM(G , n).
Scoccola uses two self-maps on the universe: suspension followed by (n+1)-truncation | |Σ | |n+1 and
forgetting a point F• to form the composition

EM(G , n)
| |Σ | |n+1−−−−−→ EM••(G , n + 1) F•−−→ EM•(G , n + 1)

from types to types with two points (north and south), to pointed types (by forgetting the south

point).

Definition 2.3. Given f : M → EM(G , n), the associated action ofM onG, denoted by f•
is defined to be f• = F• ◦ ||Σ | |n+1 ◦ f .
Theorem 2.1. (Scoccola[8] Proposition 2.39). A K(G , n) bundle f : M → EM(G , n) is equiv-
alent to a map in M → K(G , n + 1), and so is a principal fibration, if and only if the associated

action f• is contractible.

Let’s relate this to orientation. Note that the obstruction in the theorem is about amap intoEM•(G , n+
1) and further note that EM•(G , n) ' K(AutG , 1) (independent of n). The theorem says that
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the data of a map into EM(G , n) factors into data about a map into K(G , n + 1) and one into

K(AutG , 1). Informally, EM(G , n) is a little too large to be a K (G , n + 1), as it includes data
about automorphisms ofG.

In the special case of EM(ℤ, 1) the conditions of the theorem are met when f• : M → K(Autℤ, 1)
is contractible. Autℤ consists of the ℤ/2ℤ worth of outer automorphisms given by multiplication

by ±1. If we look at the fiber sequence

K(S1 , 1) → BAutS1 → K(Autℤ, 1)

we see the automorphisms of the circle as an extension of the group of automorphisms that are

homotopic to the identity (which are the torsorial actions) by the group that sends the loop in S1 to
its inverse. This is another way to see that a map f : M → BAutS1 ' EM(ℤ, 1) factors through
K(S1 , 1) ' K(ℤ, 2) if and only if the composition to K(Autℤ, 1) is trivial. This amounts to a

choice of loop-direction for all the circles, and so deserves the name “ f is oriented.” In addition the

map BAutS1 → K(Autℤ, 1) deserves to be called the first Stiefel-Whitney class of f , and the

requirement here is that it vanishes.

Note 2.1. Reinterpreting more of the theory of characteristic classes would be an enlightening

future project. Defining a Chern class and Euler class in 2 dimensions is related to the goals of this

note, but the full theory is about a family of invariants in different dimensions that have various

relations between each other and satisfy other properties.

2.2 Pathovers in circle bundles

Suppose we haveT : M → EM(ℤ, 1) and P def
=

∑
x:MT (x). We adopt a convention of naming

objects inM with Latin letters, and the corresponding structures in P with Greek letters. Recall that

if p : a =M b thenT acts on p with what’s called the action on paths, denoted ap(T ) (p) :T (a) =T (b).
This is a path in the codomain, which in this case is a type of types. Type theory also provides a

function called transport, denoted tr(p) : T (a) → T (b) which acts on the fibers of P . tr(p) is
a function, acting on the terms of the types T (a) and T (b), and univalence tells us this is the

isomorphism corresponding to ap(T ) (p).

Type theory also tells us that paths in P are given by pairs of paths: a path p : a =M b in the base,

and a pathover 𝜋 : tr(p) (𝛼) =T (b) 𝛽 between 𝛼 : T (a) and 𝛽 : T (b) in the fibers. We can’t

directly compare 𝛼 and 𝛽 since they are of different types, so we apply transport to one of them.

We say 𝜋 lies over p. See Figure 1.

Lastly we want to recall that in the presence of a section X : M → P there is a dependent gener-

alization of ap called apd: apd(X) (p) : tr(p) (X (a)) = X (b) which is a pathover between the two

values of the section over the basepoints of the path p.

3 Polytopes and combinatorial manifolds

Wewill use two types of classical combinatorial structures: abstract polytopes and combinatorial manifolds.

The latter is a subtype of the former. Abstract polytopes (or just “polytopes” in this note) encompass

polygons, polyhedra, and higher-dimensional versions. They exclude certain undesirable shapes

such as two triangles that meet at one vertex. But they aren’t necessarily simplicial either:
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𝛼

p

a b
M

P

pr1

𝛽

trp𝛼

trp

T(a) T(b)

π

Figure 1: A path 𝜋 over the path p in the base involves the transport function.

Minimal HITs:

def S1:

base: S1

loop: base=base

def S2:

N: S2

surf: refl_N = refl_N

def torus:

b:torus

p,q:b=b

donut:p.q=q.p

the map R (realization) R(S2):U lossy map

R(C_4) has an equivalence to R(S1)

perhaps this is R(the map C_4->S1, the strict one)

C_4->S1 is a strict map

S1->C_4 is non-strict, uses generated data, uses data from R(C_4)

def OO:

6 vertices

12 edges

8 faces
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f:S2->OO

T:OO->EM(Z,1)

def OO_w:

5 vertices

8 edges

5 faces: four bottom triangles, and a square refl_b=loop "brgob"

g:S2->OO_w

compose f and g^{-1} to give OO equiv OO_w

Tof(base) is (C_4, is_equiv_s1)

inside this is a twice rotation around C_4 and a homotopy to id(C_4)

"strict morphism of HITs": ctors to ctors

Imagine only having X:U, or X:*-> U

Claim: we cannot see the one-notch "90 degree" rotation of C_4 at the level of types.

-- Connections --

Type X w/ 1-skel X_1

HIT gives skeletal filtration

functions naturally given as per-skeleton steps

there are constraints/obstructions:

obstruction to extend map T from vertices a, b to path e:a=b is that T(a) and T(b) are in same connected component

say 2-cell F contracts a loop L: F:L=refl_v some vertex v

we have a choice of v for each face F

then T(F) must be in same component as refl_v (refl_v:\pi_1 X with basepoint v)

T(F) is merely refl, and holonomy is merely refl, and connection on this face F is merely flat

curvature is a function from 2-cells to \pi_1(X,v)

T(v):U

T(L):T(v)=T(v)

T(F):refl_{T(v)}=T(L)

the class ||T(L)||:\pi_1(U,T(v)) is an obstruction to having T(F), to extending T to F

The hierarchy of maps extending to higher skeletons, which we call connections of dimension 1, 2, etc.

This works for ANY HIT.

The combinatorial manifold structure is just one special case that gives me a specific map T.

3.1 Polytopes

Definition 3.1. A finite abstract polytope P of dimension n is a finite poset P equipped with
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• two elements pmin , pmax : P

• a rank function r : P → ℤ

and properties

• a proof that a ≤ b → r (a) ≤ r (b)

• a proof that pmin is minimal:
∏
p:P p ≥ pmin

• a proof that pmax is maximal:
∏
p:P p ≤ pmax

• a proof that r (pmin) = −1 (so that non-minimal elements have rank at least 0)

• a proof that r (pmax) = n + 1 (so that non-maximal elements have rank at most n)

• a proof that rank “counts containment”:
∏
a,b:P (a ≤ b) × (is_empty

∑
c:P (a ≤ c ≤ b)) →

b = a + 1

• a proof of strong connectedness (all intervals are connected via a chain of containment):∏
a,b:P\{pmin ,pmax} (

∑
x:P a ≤ x ≤ b is connected)

• a proof of the diamond condition that between two elements that differ by two ranks lie exactly

two elements:
∏
a,b:P (r (b) − r (a) = 2) → #(∑c:P a ≤ c ≤ b) = 4 (of which a and b are

two).

The diamond condition captures that two edges meet at a vertex, two faces meet at one edge,

and so on. See the Hasse diagram (a graph of the poset with rank represented on the y-axis) of a
tetrahedron in Figure 2 and the square pyramid (which will arise later as an octahedron minus its

south pole) in Figure 3.

Figure 2: A finite abstract polytope representation of a tetrahedron, in the form of its “Hasse dia-

gram” (from polytope.miraheze.org, public domain).

Next we will map abstract polytopes to higher inductive types. The poset structure will generate

the paths, so the rank will correspond to the dimension. But as usual in a HIT we will need to make

7



Ø

w

br
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w b r
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wbr

rg

go

obwr wo wg

wrg wgowob bogr

wbogr

Figure 3: The Hasse diagram of a square pyramid (from wikimedia.org, public domain).

a choice of direction for each path constructor, which wasn’t necessary in the polytope setting. We

will restrict to dimension at most 2.

Definition 3.2. A higher inductive polytope (HIP) of dimension at most 2 P for a

polytope P of dimension at most 2 is a type with constructor data given by

1. For each rank 0 element v a termV : P .

2. For each rank 1 element e and rank 1 pair v1 , v2 ≤ e (cardinality 2 by the diamond condition)

a path E :V1 =V2.

3. For each rank 2 element f containing edges e1 , . . . , en containing a cycle of vertex pairs

{{v11 , v12}, . . . , {vn1 , vn2 = v11}} a 2-path F : E1 · . . . · En = reflv11 .

Definition 3.3. Given a HIT of dimension at most 2 we have the skeleta P0 ,P1 ,P2 where

Pi is the HIT generated by using the constructors up to dimension i. The HIT also provides a

chain of inclusions of skeleta P0 → P1 → P2.

If Z : U is a type then to define a map

3.2 Combinatorial manifolds

We will adapt to higher inductive types in a straightforward manner the classical construction of

combinatorial manifolds. See for example the classic book by Kirby and Siebenmann[9]. These are a

subclass of simplicial complexes.

Definition 3.4. An abstract simplicial complex M of dimension n consists of a set M0
of vertices, and for each 0 < k ≤ n a set Mk of subsets of M0 of cardinality k + 1, such that any

( j + 1)-element subset ofMk is an element ofM j . The elements ofMk are called k-faces. Denote

by SimpCompSetn the type of abstract simplicial complexes of dimension n (where the suffix Set
reminds us that this is a type of sets).

Note that we don’t require all subsets of M0 to be included – that would make M an individual

simplex. A simplicial complex is a family of simplices that are identified along various faces.
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Definition 3.5. In an abstract simplicial complexM of dimension n, the link of a vertex v is the
n − 1-face containing every face m ∈ Mn−1 such that v ∉ m and m ∪ v is an n-face ofM .

The link is all the neighboring vertices of v and the codimension 1 faces joining those to each other.

See for example Figure 4.

a b

f v c

e d

Figure 4: The link of v in this complex consists of the vertices {a, b , c , d , e, f } and the edges

{ab , bc , cd , de, e f , f a}, forming a hexagon.

Definition 3.6. A combinatorial manifold (or combinatorial triangulation) of dimen-

sion n is a simplicial complex of dimension n such that the link of every vertex is a simplicial sphere

of dimension n − 1 (i.e. its geometric realization is homeomorphic to an n − 1-sphere). Denote

by CombMfdSetn the type of combinatorial manifolds of dimension n (which the notation again

reminds us are sets).

In a 2-dimensional combinatorial manifold the link is a polygon. See Figures 5, 6, and 7 for some

examples of 2-dimensional combinatorial manifolds of genus 0, 1, and 3.

A classical 1940 result of Whitehead, building on Cairn, states that every smooth manifold admits

a combinatorial triangulation[10]. So it appears reasonably well motivated to study this class of

objects.

Figure 5: A combinatorial triangulation of a sphere, created with the tool stripy.
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Figure 6: A torus with an interesting triangulation, from Wikipedia. The links have various vertex

counts from 5-7. Clearly a constant value of 6 would also work. (By Ag2gaeh - Own work, CC

BY-SA 3.0.)

Figure 7: A 3-holes torus with triangulation, from Wikipedia. (By Ag2gaeh - Own work, CC BY-

SA 3.0.)
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3.3 Higher inductive combinatorial manifolds

We will convert a simplicial complexM of dimension at most 2 to a higher inductive type, in two

steps.

Definition 3.7. Define CombMfd2 to be the type of higher inductive constructors of com-

binatorial manifolds of dimension at most 2 and let H : CombMfdSet2 → CombMfd2 be

a map from a combinatorial manifold to such a HIT following this method:

1. vertices: a function v0 : M0 → H(M) serving as the 0-dimensional constructors

2. edges: a function v1 on 1-faces, sending {a, b} ↦→ v0(a) = v0(b)

3. 2-faces: a function v2 on 2-faces, sending {a, b , c} ↦→ refla = v1({a, b}) · v1({b , c}) ·
v1({a, c})−1.

We will assume there is a formal theory of such HITs, and that at least up to dimension 2 there are

no obstructions to simply copying over the combinatorial data to the HIT constructors. For recent

work on HITs see for example David Wärn’s discussion of pushouts[11].

Definition 3.8. Denote by R : CombMfd2 → Type the process of generating a type from the

HIT data (which we refer to as realization). Note that R(H (M)) is not in general a set, and may

not even be 2-truncated for an arbitrary 2-dimensional combinatorial manifoldM : CombMfdSet2.

We’re making the distinction between H and R because we will mostly study functions and phe-

nomena on H(M) for some simplicial complexM .

3.4 Polygons

We will now start looking at some examples, first by defining a type that is important both for the

domain and the codomain of mere circles: a square.

Definition 3.9. The higher inductive type C4 (where C stands for “circle”).

C4 : Type
c1 , c2 , c3 , c4 : C4

c1c2 : c1 = c2
c2c3 : c2 = c3
c3c4 : c3 = c4
c4c1 : c4 = c1

The standard HoTT circle itself is a non-example of a combinatorial manifold since it lacks the

second vertex of the edge:

Definition 3.10. The higher inductive type S1:

S1 : Type
base : S1

loop : base = base
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c1 c2

c3c4

c1c2

c2c3

c3c4

c4c1

Figure 8: The HIT C4.

Nonetheless, all polygons are equivalent to each other and to S1.

Lemma 3.1. Define the function ℓ : C4 → S1 by

ℓ (ci) = base, i = 1, 2, 3, 4
ℓ (c1c2) = loop

ℓ (c2c3) = ℓ (c3c4) = ℓ (c4c1) = reflbase

and define the function s1 : S1 → C4 by s1(base) = c1 and s1(loop) = c1c2 · c2c3 · c3c4 · c4c1. (The
subscript on s1 reminds us that we chose vertex c1 to map base to.) Then ℓ and s1 constitute an

equivalence c4_equiv : isequiv(ℓ , s1).

Proof. First we need to construct a term 4e :
∏
x:C4 s1(ℓ (x)) = x by induction on C4, by defining

terms

1. 4ei : s1(ℓ (ci)) = ci
2. 4ei j : apd(cic j) (4ei) = 4e j, i.e. 4ei j : s1(ℓ (cic j))−1 · 4ei · cic j = 4e j.

where in the second goal we used a result about apd on transport (HoTTBook[12] Theorem 2.11.3).

These goals are fulfilled by

• 4e1 = reflc1
• 4e2 = c1c2

• 4e3 = c1c2 · c2c3
• 4e4 = c1c2 · c2c3 · c3c4
• 4e12 = (c1c2 · c2c3 · c3c4 · c4c1)−1 · (−)

• 4e23 = reflc1c2·c2c3
• 4e34 = reflc1c2·c2c3·c3c4
• 4e41 = 4e12.

Next we need a term e4 :
∏
y:S1 ℓ (s1(y)) = y by induction on S1, by defining.

1. e4b : ℓ (s1(base)) = base

2. e4l : apd(loop) (e4b) = e4b, i.e. e4l : ℓ (s1(loop))−1 · e4b · e4b.

These goals are fulfilled by
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• e4b = reflbase

• e4l = reflloop.

�

A different approach might be to prove that Cn ' Cn−1 by removing just one vertex, and seeing

that the argument generates equivalences between any polygon, or a polygon and S1.

Recalling that terms of EM(ℤ, 1) are pairs: a type, and a mere equivalence with S1, we have:

Corollary 3.1. We have (C4 , | |c4_equiv| |−1) : EM(ℤ, 1).
Given some other square abcd and an equivalencewithC4, we get via univalence a path inEM(ℤ, 1).
This includes automorphisms of C4, for example R. Furthermore there is a homotopy from R to

the identity, which give a 2-path reflC4 = R in the universe.

Real-world triangulations of surfaces will often have links whose number of vertices varies across the

surface. For example we can see hexagons and pentagons in Figure 5. This presumably introduces

only a minor practical inconvenience and doesn’t materially affect the discussion to come.

3.5 The higher inductive type 𝕆

We will create our first combinatorial surface, a 2-sphere. We will adopt the convention that a

subscript indicates the dimension of a subskeleton of a complex. For instance, we have base : S1
0 .

Definition 3.11. The HIT 𝕆0 is just 6 points, intended as the 0-skeleton of an octahedron, with

vertices named after the colors on the faces of a famous Central European puzzle cube.

w , y , b , r , g , o : 𝕆0

Definition 3.12. The HIT 𝕆1 is the 1-skeleton of an octahedron.

w , y , b , r , g , o : 𝕆1 yg : y = g
wb : w = b yo : y = o
wr : w = r br : b = r
wg : w = g r g : r = g
wo : w = o go : g = o
yb : y = b ob : o = b
yr : y = r

13



Definition 3.13. The HIT 𝕆 is an octahedron:

w , y , b , r , g , o : 𝕆
wb : w = b br : b = r wbr : wb · br · wr−1 = reflw
wr : w = r r g : r = g wrg : wr · r g · wg−1 = reflw
wg : w = g go : g = o wgo : wg · go · wo−1 = reflw
wo : w = o ob : o = b wob : wo · ob · wb−1 = reflw
yb : y = b yrb : yr · rb · yb−1 = refly
yr : y = r ygr : yg · gr · yr−1 = refly
yg : y = g yog : yo · og · yg−1 = refly
yo : y = o ybo : yb · bo · yo−1 = refly

b

y

w

g
r

o

Figure 9: The HIT 𝕆 which has 6 points, 12 1-paths, 8 2-paths.

We have obviousmaps𝕆0
i0−→ 𝕆1

i1−→ 𝕆 that include each skeleton into the next-higher-dimensional

skeleton.

3.6 Groupoid operations on higher inductive combinatorial manifolds

LetM : SimpCompSet2 be a combinatorial 2-manifold and 𝕄
def
= H(M) : CombMfd2 the corre-

sponding higher inductive type. 𝕄 has triangular 2-faces just as M does, except they are 2-paths

in the HoTT sense. If two faces bca and bdc share the edge bc (see Figure 10), then we can define

an operation that combines the combinatorics of simplices with the higher groupoid operations

generated by our HIT.

Consider Figure 10 and the 2-paths bac : ba · ac = bc and bdc : bd · dc = bc. The 2-path

concatenation bac · bdc−1 is a path in ba · ac = bd · dc. And from there we see we have a 4-gon

abdc : reflb = reflb. In this way we can concatenate faces across common boundaries once we

choose a common vertex (in this case b).

We will have two use cases for this operation. The first is to consider the concatenation of all the

faces of 𝕄, i.e. a term f𝕄 : refla = refla corresponding to 𝕄 itself. This will play the role of the

“fundamental homology class” from classical topology, which is an object on which 2-forms can be

evaluated to compute their value on the whole manifold.
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b
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d a

b

c
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Figure 10: Concatenating the triangles bac and bdc gives the 4-gon abdc.

Definition 3.14. If we have a combinatorial manifold 𝕄 : CombMfd2 (or a combinatorial man-

ifold minus some isolated zeros 𝕄
def
= ℕ \ Z) and a : 𝕄0 is a vertex, a total face of 𝕄 is a term

f𝕄 : refla = refla given by any choice of ordering of the faces { fi}, a vertex vi in each face, and

terms a = vi for each face.

Of course there are many choices in this definition of total face!

The second use case for concatenating faces is to create a HIT related to 𝕄 but without some of

the point constructors. Figure 11 illustrates the equivalence.

v v

Figure 11: Concatenating the six triangles in the approrpiate way produces a 2-path in reflv = reflv
and removes the vertex at the center.

Definition 3.15. If𝕄 : CombMfd2 is a combinatorial manifold and Z ⊂ 𝕄0 is a set of vertices in
𝕄 with members Z = {z0 , . . . , zn}, then denote by 𝕄 \ Z the type given by omitting the vertices

in Z from the constructors in all dimensions where they appeared. Call the points of Z isolated

if no two of them are neighbors, i.e. we have
∏
z:Z link(z) ∩ Z = ∅. In the isolated case 𝕄 \ Z has

boundary circles where each vertex was removed.

Definition 3.16. If we have𝕄 \Z for some isolated set of verticies Z, then for each z : Z we can

compose all the faces which contain z, forming a new face (see Figure 11). In this way we produce

a HIT called𝕄Z , which is no longer combinatorial. We call𝕄Z the replacement of𝕄without

Z.

Lemma 3.2. If Z are isolated points of 𝕄 then we have R(𝕄) =Type R(𝕄Z).

Proof. We will prove that concatenating two faces of𝕄 as in Figure 10 produces an equivalent type.

Let A be the constructor given on the left that includes the edge bc, and B the constructor on the

right. We will define functions on constructors. Let f : A→ B be

• f (a : A) = a : B, f (b) = b , f (c) = c , f (d) = d

• f (ab) = ab , f (bd) = bd , f (dc) = dc , f (ca) = ca
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• f (bc) = bdc

• f (abc) = abcd

• f (bdc) = reflbd·dc
which “squishes the right face onto its right >-shaped boundary.” In the other direction let g :
B → A be the inclusion of all the constructors of dimension 1 and 2, and set g (abdc) = abc ∗ bdc,
which denotes the concatenation operation across the shared edge.

Wemust provide a term g f :
∏
x:A g ( f (x)) = x which requires supplying four paths, five pathovers,

and two faceovers. The four paths are refla, reflb, reflc and reflc. Four of the pathovers are reflab,
reflbd , refldc, reflca. It remains to find terms

1. gfbc : apd(bc) (reflb) = reflc
2. gfabc : apd(abc) (reflab · gfbc · reflca) = reflrefla , i.e. gfabc : g ( f (abc))−1 · (reflab · gfbc · reflca) ·
abc = reflrefla

3. gfbdc : apd(bdc) (reflbd · refldc · gfbc−1) = reflreflb , i.e. gfbdc : g ( f (bdc))−1 · (reflbd · refldc ·
gfbc−1) · bdc

which are supplied by

1. cbd : cb · bd · dc = reflc
2. reflreflrefla

3. reflreflreflb
.

We must also provide a term fg :
∏
x:B f (g (x)) = x which is refl on all constructors. �

4 Connections and vector fields

4.1 The function T

We will build up a mapT out of 𝕆 which is meant to be like the circle bundle of a tangent bundle.

And so we will begin with the intrinsic data of the link at each point: taking the link of a vertex gives

us a map from vertices to polygons.

Definition 4.1. T0
def
= link : 𝕆0 → EM(ℤ, 1) is given by:

link(w) = br go link(r) = wbyg
link(y) = bogr link(g) = wryo
link(b) = woyr link(o) = wgyb

We chose these orderings for the vertices in the link, by visualizing standing at the given vertex as

if it were the north pole, then looking south and enumerating the link in clockwise order, starting

from w if possible, else b.

To extend T0 to a function T1 on the 1-skeleton we have complete freedom. Defining a map by

inductionmakes clear that the action on paths is its own structure. Two functions on the octahedron
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Figure 12: link for the vertices w , b and r .
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could agree on points but differ on edges. We are going to identify this 1-dimensional freedom with

a connection:

Definition 4.2. A connection on a higher combinatorial manifold is an extension of a circle

bundle from the 0-skeleton to the 1-skeleton.

Continuing the example, we will do something “tangent bundley”, imagining how T1 changes as

we slide from point to point in the embedding shown in the figures. Sliding fromw to b and tipping
the link as we go, we see r ↦→ r and o ↦→ o because those lie on the axis of rotation. Then g ↦→ w
and b ↦→ y.

Definition 4.3. DefineT1 : 𝕆1 → EM(ℤ, 1) on just the 1-skeleton by extendingT0 as follows:

Transport away from w:

• T1(wb) : [b , r , g , o] ↦→ [y , r , w , o] (r , o fixed)

• T1(wr) : [b , r , g , o] ↦→ [b , y , g , w] (b , g fixed)

• T1(wg) : [b , r , g , o] ↦→ [w , r , y , o]

• T1(wo) : [b , r , g , o] ↦→ [b , w , g , y]

Transport away from y:

• T1(yb) : [b , o, g , r] ↦→ [w , o, y , r]

• T1(yr) : [b , o, g , r] ↦→ [b , y , g , w]

• T1(yg) : [b , o, g , r] ↦→ [y , o, w , r]

• T1(yo) : [b , o, g , r] ↦→ [b , w , g , y]

Transport along the equator:

• T1(br) : [w , o, y , r] ↦→ [w , b , y , g]

• T1(r g) : [w , b , y , g] ↦→ [w , r , y , o]

• T1(go) : [w , r , y , o] ↦→ [w , g , y , b]

• T1(ob) : [w , g , y , b] ↦→ [w , o, y , r]
It’s very important to be able to visualize whatT1 does to triangular paths such aswb ·br ·rw (which

circulates around the boundary of face wbr ). You can see it if you imagine Figure 12 as the frames

of a short movie. Or you can place your palm over the top of a cube and note where your fingers

are pointing, then slide your hand to an equatorial face, then along the equator, then back to the

top. The answer is: you come back rotated clockwise by a quarter-turn.

Definition 4.4. The map R : C4 → C4 rotates by one quarter turn, one “click”:

• R(c1) = c2
• R(c2) = c3
• R(c3) = c4
• R(c4) = c1

• R(c1c2) = c2c3
• R(c2c3) = c3c4
• R(c3c4) = c4c1
• R(c4c1) = c1c2
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Note by univalence the equivalence R gives a loop in the universe, a term of C4 =EM(ℤ,1) C4.

Now let’s extendT1 to all of 𝕆 by providing values for the eight faces. The face wbr is a path from

reflw to the concatenation wb · br · rw, and so the image of wbr under the extended version ofT1
must be a homotopy from reflT1 (w) toT1(wb · br · rw). Here there is no additional freedom.

Definition 4.5. DefineT2 : 𝕆 → EM(ℤ, 1) by extendingT1 to the faces as follows:

• T2(wbr) = HR
• T2(wrg) = HR
• T2(wgo) = HR
• T2(ybo) = HR

• T2(yrb) = HR
• T2(ygr) = HR
• T2(yog) = HR
• T2(ybo) = HR

where HR : R = reflC4 is the obvious homotopy given by composition with R−1. Passing through
univalence we get a 2-path between R and refl in the loop space C4 =EM(ℤ,1) C4.

Definition 4.6. The curvature of a connection on a type family T : 𝕄 → U at a vertex v
of a 2-face f with boundary path p f of a higher combinatorial manifold 𝕄 is the automorphism

tr(p f ) (Tv) together with a homotopy to idTv.

Note 4.1. We have defined a function on a cell by requiring it to correspond to the value on the

boundary of that cell. This is familiar in classical differential topology, where it’s called the exterior

derivative. The duality of d and 𝜕 is recognizable inT2, and we might say “curvature is the derivative

of the connection.”

4.2 T on concatenations of faces

Continuing with the classical analogies, we should seek a way to concatenate the curvature on two

or more faces. This would correspond to integrating the curvature 2-form over a larger 2-cell,

including integrating over a total face to compute total curvature. Look again at Figure 10 where we

concatenated two faces that share an edge. HoTT maps respect groupoid operations, so we have

T2(abc · bdc) = T2(abdc). We can double-check this by comparing transport around a 4-gon like

wbyr to a path that traverses each face.

Lemma 4.1.

T1(wb · by · yr · rw) =T1(wb · br · rw · wb · by · yr · rb · bw)

Proof. Both are equal to R2 acting to permute {b , r , g , o} to {g , o, b , r}. �

Similarly transport around the other vertical wedges wryg , wgyo and woyb are each R2, and the

four wedges can be composed to obtain R8 : link(w) = link(w). This implies that the total face

given by concatenating all 8 faces (in this order) maps byT2 to R8 together with the homotopy that

unwinds R8 to the identity.

What if we chose another strategy for concatenating the faces of 𝕆? Suppose we concatenate all

four triangles in the upper hemisphere with w as the basepoint, then move to y and compose the

four southern triangles, then move back up to w?
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Lemma 4.2.

T1(wb · br · r g · go · ow) =T1(wb · by · (yr · rb · bo · og · gr · ry) · yb · bw)

Proof. Both are equal to R4. �

And therefore by concatenating the path on the left with the path on the right we see that this

different ordering of the faces gives the same value ofT2 as before, namely R8.

4.3 The torus

We can define a combinatorial torus as a similar HIT. This time each vertex will have six neighbors.

So all the links will be merely equal to C6 which is a hexagonal version of C4. See Figure 13.

To help parse this figure, imagine instead Figure 14. We take this simple alternating-triangle pat-

tern, then glue the left and right edges, then bend into Figure 13. The fact that each column in

Figure 14 has four dots corresponds to the torus in Figure 13 having a square in front, diamonds in

the middle, and a square in back.

Figure 13: Torus embedded in 3-dimensional space. If you see color in your rendering then black

lines trace four square-shaped paths, red ones connect the front square to the middle diamonds,

and blue ones connect the back path to the middle ones.

This somewhat arbitrary and unfamiliar model of a torus has the helpful property that it is a com-

binatorial manifold that is somewhat minimal while still being representable by a donut shape. But

the donut-shaped version suggests a very different connection than the flat model! Starting with the

flat model, we can easily see how to defineT1 by sliding a link rigidly along the page to the link of

some adjacent vertex. Then we can see that transport around any loop is the identity and soT2 is

always the identity (together with the homotopy reflid from the identity to itself). So if we imagine a

way to visit every face like we did for the octahedron, starting and ending at some basepoint v, we
expect to see no net rotation at all ofTv. Later we will call this “total curvature 0.”

The donut-shaped torus suggests a different connection, one determined by the embedding in 3-

space that we have represented. But the easiest way to think about that bundle and its connection
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outer back hole front outer
• •

top of diamonds • • •
• •

• • •
• •

bottom of diamonds • • •
• •

• • •
• •

top of diamonds • • •

Figure 14: An inspiration for the torus. Identify the sides and then the top, definitionally, to get the

actual torus.

and curvature is to wait until we have a proof of the Poincaré-Hopf theorem, so that we can instead

compute with a vector field.

4.4 Vector fields

Definition 4.7. A partial function f : A→ B is a function f : A→ B +★, the disjoint union
of B with the 1-element type.

IfT : 𝕄 → EM(ℤ, 1) is a bundle of mere circles, then a vector field should be a partial function

T• : 𝕄 → EM•(ℤ, 1) that liftsT . In other words, a pointing of some of the fibers. This aligns with

the classical picture of a choice of nonzero vector at each point, except for some points where the

vector field vanishes. So instead of having a notion corresponding to the full tangent vector space

(one candidate for which would be the disk at each point, i.e. link plus its spokes and filler triangles)

we are mapping some vertices to their circular fibers, and others to★. This lets us continue to work

with EM(ℤ, 1) instead of a type of tangent spaces.

Figure 15 illustrates what removing the preimage of★ looks like. The resulting type is no longer a

combinatorial manifold, since it fails the condition about every point having a circular link.

Definition 4.8. Let𝕄 : CombMfd2 be a combinatorial manifold and Z an isolated set of vertices.

A vector field X on 𝕄 with zero set Z is a partial section of P , i.e. a term X :
∏
x:𝕄\ZT (x)

(and eliding the unique term of Z →★). The exponential map exp : P → 𝕄 is the map sending

points in a fiber to the corresponding point in the link of the base point: exp(x , y : link(x)) = y. In
commutative diagram form we have:
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outer back hole front outer
• •

top of diamonds • • •
• •

• • •
• •

bottom of diamonds • •
• •

• • •
• •

top of diamonds • • •

Figure 15: The flat torus with one vertex removed. This also removes the edges and faces containing

that vertex.

P def
=

∑
C:T (𝕄\Z) C EM•(ℤ, 1)

𝕄 \ Z EM(ℤ, 1)

T

pr1 exp
ù

pr1X:
∏
x:𝕄\ZTx

T•

T

whereT• =T ◦X . Note that exp is different from pr1 since it spreads a fiber out onto the manifold.

The composition exp ◦X is a map𝕄\Z → 𝕄, and can be thought of as the flow of the vector field.

Let’s see a few examples.

Definition 4.9. The spinning vector field Xspin on 𝕆 \ {w , y} is given by the following data.

We compose with exp to keep the notation directly in 𝕆. See Figure 16

exp ◦Xspin(b) = r
exp ◦Xspin(r) = g
exp ◦Xspin(g) = o
exp ◦Xspin(o) = b

We must also define pathovers and faceovers, i.e. apd(Xspin. For example, Xspin(b) is the point r
in the link woyr . Transport along br takes the link of b to the link of r , mapping r : Tb to g : Tr .
This agrees with Xspin(r) and so we will choose Xspin(br) = reflg inTr . We similarly choose refl
pathovers for the other equatorial edges. And since we have deleted all the faces when removing

the zeros, there are no faceovers.

Definition 4.10. The downward vector field Xdown on 𝕆 \ {w , y} is given by the following
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Figure 16: The vector field Xspin on 𝕆, which circulates around the equator. w and y are zeros.

data, where again we compose with exp to keep the notation directly in 𝕆. See Figure 17

exp ◦Xspin(b) = y
exp ◦Xspin(r) = y
exp ◦Xspin(g) = y
exp ◦Xspin(o) = y

We also need to select a pathover for each edge on the equator. Transport on all these edges takes

y in one fiber to y in the next, so we choose the path refly in all four of these fibers. Again there are

no faceovers to map.

b

y

w

g
r

o

Figure 17: The vector field Xdown on 𝕆, which flows downward. w and y are zeros.

4.5 Index of a vector field

Index should be an integer that computes a winding number “of the vector field” around a zero.

We can compute an integer from a map by taking its degree, which is a construction we will assume

that we have, for example using [13], where they indeed require that degree agrees with winding

number for maps S1 → S1.

Definition 4.11. Let𝕄 : CombMfd2 and letT : 𝕄 → EM(ℤ, 1) be a bundle of circles given on

𝕄0 by link. Let z : Z be an isolated zero and let link z be its polygonal link in 𝕄, with a clockwise

orientation, say with ordered vertices {lz1 , . . . , lzn}. We call the degree of the map tr(link z) :
Tlz1 =Tlz1 the index of X at z. It does not depend on which vertex we use.

Lemma 4.3. The index of Xspin at both y and at w is 1, and the same is true for Xdown.
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Proof. apd(Xspin) (br) = reflXspin (r) and similarly for the other edges and for Xdown. So apd on the

loop around the equator is the identity, which has index 1. �

If these vector fields both have index +1, what does index –1 look like? We can see an example on

the torus with its downward vector field.

On the torus we can also consider both a spinning vector field and a downward vector field. Fig-

ure 18 shows one way to spin the torus, and in this case there are no zeros so the index is the degree

of a map from the empty set, which is 0 (as it factors through a constant map).

Figure 19 shows a downward flow with four zeros. Although this is a picture of the flat torus, the

vector field is derived from the shape of Figure 13 where we actually have a notion of up and down.

We see at the position labeled (outer, top of diamonds), i.e. the top of the torus, an everywhere

outward pointing vector field. At (outer, bottom of diamonds) we see an inward pointing vector

field. But at (hole, top of diamonds), i.e. the top of the hole, we see something else. Imagine

transport from the neighbor to the lower right to the neighbor below, then continuing clockwise

around the link. If we assume that we define apd on these edges to be counterclockwise rotation, then

transport around the whole link has degree –1. Similarly for the zero at (hole, bottom of diamonds).

Adding these four indexes we again get 0.

Summarizing what we’ve seen in our examples, vector fields with isolated zeros have an index, and

this index tracks with the total curvature, and the Euler characteristic.

outer back hole front outer
• •

top of diamonds • • •
• •

• • •
• •

bottom of diamonds • • •
• •

• • •
• •

top of diamonds • • •

Figure 18: A vector field on the torus that spins and has no zeros.

4.6 Equality of total index and total curvature

Here we are inspired by the classical proof of Hopf[4], presented in detail in Needham[5].

Definition 4.12. An enumeration of a principal bundle with connection and vector field on a

higher combinatorial manifold consists of the following data:
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outer back hole front outer
• •

top of diamonds
• •

• • •
• •

bottom of diamonds
• •

• • •
• •

top of diamonds

Figure 19: A vector field on the torus that flows downward, when viewed as a donut. The zeros are

represented as missing dots. Every dot has one outgoing vector.

• a familyT : 𝕄 → K(ℤ, 2) on some higher combinatorial manifold

• a nonvanishing vector field X : 𝕄 \ Z → P with isolated zeros Z

• a total face of the replacement𝕄Z (Definition 3.14), that is

• a basepoint a : 𝕄Z

• a term f𝕄Z : refla = refla given by

• an ordering of the face constructors { fi}, with the sub-list of faces denoted { fzk}
refers to the replacement faces at the zeros

• a vertex vi in each face

• terms a = vi for each face

Note 4.2. An enumeration let us work both with 𝕄 \ Z where the vector field is nonvanishing,

while also having access to the disks that are missing from 𝕄 \ Z.
Lemma 4.4. The sub-list of faces { fi} − { fzk} obtained by skipping the replacement faces at the

zeros, is an ordering of face constructors for 𝕄 \ Z.

Proof. The algorithm that visits each face in order always starts and ends at a and so we can skip

any faces we wish, to obtain an ordering of face constructors for the remaining union of faces. �

Note that on 𝕄 \ Z the vector field X trivializes the bundle by mapping into the contractible type

of pointed types over K(ℤ, 2). So X ' Y : 𝕄 \ Z → (Ta, a), the fixed pointed circle in the fiber

of the basepoint a.

Lemma 4.5. The degree ofY is minus the total index of X .
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Proof. The ordering of faces { fi} − { fzk} provides an ordering of all the edges, say {el}. Each

edge appears an even number of times in this list, traversed in opposite directions, except those

bounding a replacement face. These replacement-bounding edges are traversed an odd number of

times and can be concatenated to traverse the boundary counterclockwise. Concatenation of paths

in S1 is abelian, soY ({el}) cancels except on the boundary of the replacement faces, which gives a

map from the disjoint union of boundary circles toTa, with each boundary circle traversed in the

counterclockwise direction. The orientation gives the minus sign. �

Consider now the total face f𝕄Z of 𝕄Z and its ordering of faces { fi}. Y is only defined on some of

these faces. We will define a new function on all the { fi}.
Definition 4.13. The coupling map C : 𝕄Z → Ta is defined to be Y on 𝕄 \ Z and on the

remaining faces it is defined by C ( fi)
def
= apd(X) (𝜕 fi) where 𝜕 fi : vi = vi is the clockwise path

around the face starting from the vertex supplied by the data of the total face.

Because apd uses both transport and the value of the vector field, it couples the connection with the

vector field, hence the name. Of course in HoTT this coupling is built into the definition of apd, so
that’s another reminder that we aren’t straying far from the foundations to find these geometrical

concepts.

The fact thatC is defined on all the faces, by using the value of the vector field only on the 1-skeleton

of𝕄Z where it was always defined, lets us make the final part of the argument.

Lemma 4.6. C : ∪i{ fi} →Ta is equal to a constant map.

Proof. The data of the total face provides an ordering of all the edges. Each edge appears an even

number of times, traversed in opposite directions, including the edges in the replacement faces.

Concatenation of paths in the polygonTa is abelian, so the paths all cancel. �

C is similar to X andY except that it is a total function. On any given edge it computes a path, that

is, a homotopy from the function tr to the function X , which we can call “the difference between

transport and the vector field on that edge.” We have found a way to add all these homotopies

together to get 0. We can call this total “the difference between the total index and the total curva-

ture.”

Recall now that we made some arbitrary choices in Definition 4.12 of an enumeration, and hence

the function C. But since C is unconditionally constant, the space of extra data is contractible.

Corollary 4.1. The total index of a vector field with isolated zeros is independent of the vector

field.

Corollary 4.2. The total curvature is an integer.

The last step is to link this value to the Euler characteristic.

4.7 Identification with Euler characteristic

Here we only point the way. Combinatorial manifolds are intuitive objects that connect directly

to the classical definition of Euler characteristic. We can argue using Morse theory, the study of

smooth real-valued functions on smooth manifolds and their singularities. Classically the gradient
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of a Morse function is a vector field that can be used to decompose the manifold into its handlebody

decomposition. This would be an excellent story to pursue in future work.

Imagine starting with a classical 2-manifold of genus g that has been triangulated. Stand it up-

right with the holes forming a vertical sequence. Now install a vector field that points downward

whenever possible. This vector field will have a zero at the top and bottom, and one at the top and

bottom of each hole. The top and bottom will have zeros of (classical) index 1, and zeros in the

holes will have index –1. We include some sketches in the case of a torus (Figure 20). This illustrates

how we obtain the formula for genus g : 𝜒 (M) = 2 − 2g . If we choose the triangulation so that

the zeros are at vertices, we should be able to import that data into CombMfd2 and reproduce the

computation using the tools in this note.

• top

• upper hole

• lower hole

• bottom
Figure 20: Schematic of the zeros of the downward flow of a torus.

5 Why this works

The arguments in this note flowed from a simple hypothesis: that ap is analogous to d, the exterior
derivative. For example:

1. The derivative of a function is its action on tangent vectors, and this is an infinitesimal limit of

its action on paths (though these classical “paths” consist of points, which is why d f is entailed
in the data of f on points).

2. Connections are not entailed in the data of a classical principal bundle. But they do answer

the question: what does the bundle do on paths, i.e. how do we transport along a path? In

this sense a connection might be the derivative of a bundle (and curvature the derivative of

the connection).

3. In HoTT the transport function on fibers along a path is part of the type family. But of

course if we are working inductively on a HIT, there is a moment after we define the family

on points and before we define it on paths. In this sense connections are also extra structure.

4. de Rham complexes and cohomology are graded by dimension, but in HoTT this data is

unified into a higher groupoid. Is a complex an infinitesimal limit of a groupoid?

5. The Leibniz rule (product rule) for real-valued smooth functions f , g : M → ℝ is d( f g) =
f dg + gd f . In HoTT given functions f , g : M → H for any typeM and H-space H with

multiplication ∗, and path p : x =M y, we have f (p) ∗ g (p) = ( f (x) ∗ g (p)) · ( f (p) ∗ g (y)),
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where we say f (p) instead of ap(p) ( f ). The Leibniz formula is so often treated as an axiom

that it was surprising to the author to see this relationship with whiskering.

We will end with some discussion of classical connections and how to find more analogies with what

we defined in previous sections.

5.1 Classical connections

Definition 5.1. A principal bundle is a smooth map 𝜋 : P → M between smooth manifolds

such that

1. All the fibers of 𝜋 are equivalent as a smooth manifold to a fixed Lie groupG.

2. There is a smooth G-action P ×G → P on the right that acts on fibers, and does so freely

and transitively.

3. There exists an open cover {Ui} ofM and equivariant diffeomorphisms 𝜙i : P |Ui →Ui ×G
(i.e. 𝜙i (p · g) = 𝜙i (p) · g ).

Physicists call principal bundle automorphisms “gauge transformations”:

Definition 5.2. A gauge transformation is a mapΦ : P → P commuting with the projection

toM andwhich isG-equivariant, i.e. Φ(p·g) = Φ(p)·g . Denote the group of gauge transformations

by AutP . In the literature it is sometimes denoted G (P).
Definition 5.3. The vertical bundleVP of a principal bundle 𝜋 : P → M with Lie groupG
is the kernel of the derivativeT 𝜋 :TP →TM .

VP can be visualized as the collection of tangent vectors that point along the fibers. It should be

clear that at each point ofM the group G acts onVP , sending vertical vectors to vertical vectors.

In other words, AutP acts onVP .

Definition 5.4. An Ehresmann connection on a principal bundle 𝜋 : P → M with Lie group

G is a splittingTP =VP ⊕ HP at every point of P into vertical and complementary “horizontal”

subspaces, which is preserved by the action ofG.

Being preserved by the action ofG implies that the complementary horizontal subspaces in a given

fiber of 𝜋 : P → M are determined by the splitting at any single point in the fiber. The action of

G on this fiber can then push the splitting around to all the other points.

The utility and parsimony of this definition relates to the solvability of ordinary differential equa-

tions. We now have an isomorphismTp𝜋 : HpP 'T𝜋 (p)M between each horizontal space and the

tangent space below it in M . This means that given a tangent vector at x : M and a point p in
𝜋−1(x) we can uniquely lift the tangent vector to a horizontal vector at p. We can also lift vector

fields and paths in this way. To lift a path 𝛾 : [0, 1] → M you must specify a lift for 𝛾 (0) and then

lift the tangent vectors of 𝛾 and prove that you can integrate the lift of that vector field upstairs in

HP .

Armedwith the lifting of paths one immediately obtains isomorphisms between the fibers ofP : given
a path inM we can map the starting point of a lift to the ending point. So the three constructions:

the Ehresmann connection, the lifting of paths, and transport isomorphisms between fibers are all

recapitulations of the structure that the connection adds to the bundle.
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Moving now to HoTT, fix a combinatorial manifold 𝕄 : CombMfd2 and a principal bundle T :
𝕄 → K(ℤ, 2) with pullback P . HoTT immediately provides a transport isomorphism of fibers

from a path in 𝕄. Recall the theory of pathovers from Section 2.2. Does HoTT provide a lifting

of paths in 𝕄 to paths in P? Given a path p : a =𝕄 b and a point 𝛼 : Ta above a, we obtain

a slightly constrained type of paths over p that begin at 𝛼 and end at tr(p) (𝛼. This is the type

tr(p) (𝛼) = tr(p) (𝛼) which has the canonical term refl. In this sense HoTT has split the type of

paths over p into pairs given by p itself and loops in tr(p) (𝛼) = tr(p) (𝛼) inTb. The term refl could

be called the horizontal lift of the path.

5.1.1 Gauge theory

Classically, given a bundle 𝜋 : P → M there is a space of connections A (P). The group AutP
acts on this space. For example, a gauge transformation that is constant in the neighborhood of a

point (i.e. is given by multiplication by a fixed g : G) will not change the splitting, it will just shift the

splitting rigidly along the fiber. But at the other extreme, a gauge transformation that is changing

rapidly near a point will tilt the horizontal subspaces. The field of gauge theory begins with a

study of this action, and of the quotient space A (P)/AutP .
Note 5.1. Recall that torsors have a physical interpretation as a quantity without a specified unit,

such asmass, length, or time. Whenwe choose a base point in a torsor it becomes the standard torsor

G acting on itself (for example, the additive real numbers). Physicists call a choice of units a “gauge,”

and they look for laws that are independent of such a choice. In the 20th century physicists further

wondered about choices of units that vary from point to point, and began searching for objects that

are invariant under this much larger space of transformations. This led directly to the discovery of

connections and curvature as useful fields that complement the matter fields. These days, matter

fields are sections of vector bundles associated to a principal bundle by a group representation,

and force fields such as photons are connections. They were then led to explore quotienting by

the action of the group of gauge transformations, working “mod gauge.” In this scenario the base

manifoldM is spacetime, and a gauge transformation is a smoothly varying choice of gauge (units)

at each point.

In HoTT the gauge transformations are the typeT ∼T def
=

∏
a:𝕄Ta =Ta, and rather than taking

a quotient we have this group already emergent as paths in the space 𝕄 → K(ℤ, 2).

Atiyah and Bott ([14] equation 3.4) noted that the horizontal lift of two vector fields may have a

vertical component when taking their Lie bracket, and identified this vertical component with the

curvature. This forms an obstruction to splitting the Atiyah sequence of Lie algebras

vertical vector fields on P ↩→ vector fields on P
lift◦𝜋−−−−→ horizontal vector fields on P .

despite the splitting at the level of vector spaces.

In HoTT the analogue of bracketing two vector fields is (presumably) composing two paths p, q :
a =𝕄 b to form a loop p ·q−1. The curvature can be seen by noting that the transport automorphism

around the loop can be nontrivial, as discussed earlier in the note.

In this century mathematicians in HoTT and HoTT-adjacent fields sought an integrated Atiyah se-

quence, including Urs Schreiber[15][16]. This would be a Lie groupoidal version of the Atiyah
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sequence of Lie algebras. If a groupoid extension could be examined, the thinking went, a link

could be sought to Schreier theory. Tying everything together we see that the desired groupoid is

just the type P itself! To tie this with Schreier theory, we’ll recall that David Jaz Myers showed that

we have an equivalence between the type of extensions of a groupG by a group F and the actions

ofG on a delooping BF :

Ext(G;F ) ' (BG ·→ BAut(BF ))

(see [17] Theorem 2.5.7). Our type of classifying maps 𝕄 → EM(ℤ, 1) can be seen as extensions

of 𝜋1(𝕄) by the group AutS1. Such extensions that are furthermore principal fibrations are the

oriented ones, as we showed before. What a lovely reframing of principal bundles.
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